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May 22, 2018 
 
To the Members of the Selection Committee: 
 
Application of Lucas Dwiel 
 
As Lucas Dwiel’s primary mentor within the PEMM program, I am delighted to strongly support his application 
for the Neukom Institute Outstanding Undergraduate Research in Computational Science Prize. 

 
Since his first rotation in my lab, now over two years ago, Lucas has continued to impress me with his devotion 
to high caliber science and his initiative in seeking out mentors to teach him new methods in signal processing 
and machine learning. Within the lab, he has worked most directly on a series of studies related binge eating 
and alcohol drinking; his contributions to these studies have been absolutely crucial to their success.  He 
brought into the lab (or developed once here) analytical skills showcased in a number of our recent 
manuscripts already under review or soon to be submitted (e.g., Doucette et al., which he has included with his 
application, as well as Dwiel et al. and Henricks et al. – see below). Working with Drs. van der Meer (from 
Psychological and Brain Sciences) and Gui (from Biomedical Data Science), he was able to write code for 
signal processing and machine learning, which he used for the analytic work in these three papers. The first 
two studied a rat model of binge eating and the last one focused on a rat model of alcohol drinking.  In step-
wise fashion, the papers reflect the growth of Lucas’s analytic strategy and abilities.  The first paper identified a 
series of local field potentials that were able to predict a decrease in eating in an animal in response to 
localized deep brain stimulation (DBS).  The second paper attempted to identify local field potential 
“signatures” of feeding behavior, and importantly also demonstrated the ability to predict when an animal was 
about to eat.    In the third manuscript, which involved alcohol drinking, Lucas again demonstrated that 
successful DBS (resulting in decreased drinking) could be predicted by local field potentials recorded from the 
corticostriatal brain circuit. Combined with his other publications (from his undergraduate research), this body 
of work is an impressive accomplishment for a third-year graduate student. 

 
Lucas’s research studies combining computational methods with translational models of behavior have 
tremendous importance for the study of psychiatric illnesses. The paper included with his application is a 
perfect example of how Lucas is applying cutting-edge computation methods to translational neuroscience 
experiments – paving the way for future clinical investigators interested in developing effective 
neurostimulation protocols or in understanding the neural underpinnings of behavior.  

 
For these reasons and with the paper he included with his application as an exemplar of the first-rate quality of 
his computational neuroscience research, I strongly endorse Lucas Dwiel’s candidacy for the Neukom Institute 
Outstanding Undergraduate Research in Computational Science Prize.  
 
Sincerely, 

 
Alan I. Green, M.D. 
Raymond Sobel Professor of Psychiatry 
Professor of Molecular and Systems Biology 
Chair, Department of Psychiatry 
Director, Dartmouth SYNERGY Clinical and Translational Science Institute 
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Doucette, W., Dwiel, L., Boyce, J., Simon, A., Khokhar, J., & Green, A. Machine learning based classification of 
deep brain stimulation outcomes in a rat model of binge eating using ventral striatal oscillations. Under review, 
Frontiers in Psychiatry.   
Dwiel, L., Connerney, M., Green, A., Khokhar J., & Doucette, W. An unbiased decoding of ventral striatal 
oscillations in a rat model of binge eating: Finding the balance between model complexity and performance. To 
be submitted to Journal of Neuroscience. 
Henricks, A., Dwiel, L., Deveau, N., Green, A., & Doucette, W. Identifying neural predictors of response to 
cortical or striatal deep brain stimulation in a rodent model of alcohol drinking: Towards developing 
individualized therapies for alcohol use disorders. To be submitted to Translational Psychiatry. 
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May 21, 2018 
 
To whom it may concern, 
 
I am very pleased to hear that Lucas Dwiel is applying for the Neukom Institute Outstanding Undergraduate 
and Graduate Research in Computational Science Prize. 
 
It is exciting to meet a graduate student who is as motivated as Lucas to correctly apply cutting-edge 
computational techniques to translational research. Lucas primarily uses the machine learning algorithm lasso 
to find patterns in the brain activity of rodents that are predictive of treatment outcome and behaviors. The work 
that Lucas is submitting in consideration for this prize (currently under revision at Frontiers in Neuroscience) 
utilize this method to predict if a binge-eating rodent would reduce their consumption when treated with deep 
brain stimulation targeting the reward pathway. Further, he was able to use the same methods to determine 
which of two brain regions should be stimulated to elicit the largest reduction in consumption. His success in 
building models to make these predictions using brain activity data is especially exciting given the potential 
translational role for these methods in humans deciding if they should undergo such an invasive procedure as 
neurosurgery to implant deep brain stimulators and where should the stimulators target to provide the best 
chance for successful treatment. 
 
Lucas’s goals of applying powerful computational methods for the purposes of predicting treatment response in 
binge eating also has great potential to be generalized across disorders treated with neuromodulation (e.g., 
depression, anxiety, substance abuse, and Parkinson’s disease). Beyond the impact Lucas’s work will have 
upon translational neuroscience, Lucas has also demonstrated an impressive degree of self-motivation in 
learning and applying advanced computational methods. Upon his own initiative he sought me out to mentor 
him in machine learning as well as Dr. van der Meer (Psychological and Brain Sciences) for signal processing. 
The work submitted here typifies how Lucas has been able to combine both of these complex analytical 
methods to explore the ability to personalize and improve psychiatric treatment. 
 
I am happy to recommend Lucas for this prize from the Neukom Institute as I believe his drive to utilize cutting-
edge computational methods to improve translational research is representative of exactly the kind of graduate 
student the prize was created for.  
 
Best,  

 
 
 

Jiang Gui 
Associate Professor 
Department of Biomedical Data Science 
Geisel School of Medicine HB 7927 
Lebanon NH 03756 
Tel: 603-653-6083 Fax: 603-653-9093 

Department of Biomedical Data Science 
Dartmouth Hitchcock Medical Center 

Williamson Translational Research Building 
3rd Floor, HB 7261 

1 Medical Center Drive 
Lebanon, NH  03756-1000 

Phone: 603-650-1974 
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Abstract  25 

  Neuromodulation-based interventions continue to be evaluated across an array of 26 

appetitive disorders but broader implementation of these approaches remains limited due to 27 

variable treatment outcomes. We hypothesize that individual variation in treatment outcomes 28 

may be linked to differences in the networks underlying these disorders. Here, Sprague-Dawley 29 

rats received deep brain stimulation separately within each nucleus accumbens (NAc) sub-30 

region (core and shell) using a within-animal crossover design in a rat model of binge eating. 31 

Significant reductions in binge size were observed with stimulation of either target but with 32 

significant variation in effectiveness across individuals. When features of local field potentials  33 

(LFPs) recorded from the NAc were used as predictors of the pre-defined stimulation outcomes 34 

(response or non-response) from each rat using a machine-learning approach (lasso), 35 

stimulation outcomes could be predicted with greater accuracy than expected by chance (effect 36 

sizes: core = 1.13, shell = 1.05). Further, these LFP features could be used to identify the best 37 

stimulation target for each animal (core vs. shell) with an effect size = 0.96. These data suggest 38 

that individual differences in underlying network activity may contribute to the variable outcomes 39 

of circuit based interventions, and measures of network activity have the potential to individually 40 

guide the selection of an optimal stimulation target and improve overall treatment response 41 

rates.   42 

  43 

  44 

  45 

  46 

  47 

  48 

  49 

  50 
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Introduction       51 

  Brain stimulation has demonstrated the potential to improve symptoms in Parkinson’s 52 

disease, depression and obsessive-compulsive disorder, yet highly variable treatment outcomes 53 

(especially common in psychiatric disorders) indicate that the full potential of brain stimulation is 54 

not being met (Sturm et al., 2003; Mayberg et al., 2005; Toft et al., 2011). The majority of these 55 

studies evaluate the treatment outcomes of a single brain target despite pre-existing evidence 56 

supporting the potential of other stimulation targets (Mayberg et al., 2005; Schlaepfer et al., 57 

2008; Ahmari and Dougherty, 2015; Deeb et al., 2016). With these constraints, treatment 58 

outcome improvements have mostly been achieved to date through more stringent 59 

inclusion/exclusion criteria and improved precision in modulating the intended brain target (Riva-60 

Posse et al., 2014; Smart et al., 2015; Filkowski et al., 2016). Another potential avenue to 61 

improve treatment outcomes for a specific disorder could be achieved through the 62 

personalization of target selection. This approach was pioneered by cancer biologists who used 63 

tumor immunoprofiling to personalize chemotherapy, and it remains unknown if personalization 64 

of target selection for neuromodulation-based treatments has a similar potential to improve 65 

treatment outcomes in neuropsychiatric diseases including disorders of appetitive behavior.   66 

  Clinical studies that used invasive or non-invasive stimulation in disorders of appetitive 67 

behavior (e.g., addiction, binge eating and obesity) have demonstrated the potential of targeting 68 

an array of different brain areas, but also demonstrated considerable treatment response 69 

heterogeneity across individuals (Valencia-Alfonso et al., 2012; Whiting et al., 2013; Deeb et al., 70 

2016; Nangunoori et al., 2016; Terraneo et al., 2016; Spagnolo and Goldman, 2017). The pre-71 

clinical literature on deep brain stimulation (DBS), while also encouraging for appetitive 72 

disorders, reveals considerable outcome variation resulting from the targeting of different brain 73 

regions across studies. In addition, most studies report only group-based effects, masking the 74 

problem of variation across individuals (Luigjes et al., 2012; Guo et al., 2013; Pierce and 75 

Vassoler, 2013). 76 
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  In this study, we used an established rat model of binge eating to produce binge-like 77 

feeding behavior (Corwin, 2004; Corwin and Buda-Levin, 2004; Berner et al., 2008). Similar 78 

rodent models of binge eating have resulted in weight gain (Berner et al., 2008), compulsive 79 

feeding behavior (Oswald et al., 2011; Heal et al., 2016) and increased impulsivity (Vickers et 80 

al., 2017) thus displaying traits conceptually similar to those seen in patients with binge eating 81 

disorder. It is important to acknowledge, however, that this is a pre-clinical approximation of the 82 

clinical condition, and many successful pharmacologic trials using this rodent/rat model have 83 

failed to translate clinically with the exception of lisdexamfetamine (Vickers et al., 2015; McElroy 84 

et al., 2016). Using this pre-clinical model of binge eating, we have previously shown variation in 85 

individual rat outcomes receiving deep brain stimulation targeting the nucleus accumbens core 86 

with about 60% of rats displaying a significant reduction in binge size with stimulation (Doucette 87 

et al., 2015). When non-invasive, repetitive transcranial magnetic stimulation was targeted to a 88 

related area of the reward circuit in patients with binge eating, the frequency of binges 89 

decreased in 18 of 28 subjects (~60%) (Dunlop et al., 2015). While the primary outcome in 90 

clinical and pre-clinical studies tend to be different (frequency of binges vs. size of binges), this 91 

rat model of binge eating could provide insight into the source of stimulation outcome variability 92 

and provide a model to explore the potential feasibility and benefit of personalized target 93 

selection for stimulation-based interventions.   94 

  We theorize that individual variation in brain stimulation outcomes targeting a specific 95 

brain region may be linked to individual differences in the networks underpinning the symptom 96 

of interest (e.g., binge eating) (Dunlop et al., 2015). It follows that measures of relevant network 97 

activity could be used to predict brain stimulation outcomes at a given brain target or could be 98 

used to individualize the choice between potentially viable targets. This study was designed to 99 

compare the treatment efficacy of stimulation targeted to either the nucleus accumbens (NAc) 100 

core or shell, two regions with known differences in anatomical and functional connectivity and 101 

different functional roles across an array of reward-related behaviors (Burton et al., 2014; 102 
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Haber, 2016). This study replicated our previous treatment outcome variance with NAc core 103 

stimulation (Doucette et al., 2015) and extended the results to assess whether similar variation 104 

in treatment outcomes occurs with NAc shell stimulation (previously reported by Halpern et al. to 105 

be effective in a mouse model of binge eating) (Halpern et al., 2013; Wu et al., 2017). We then 106 

determined whether a relationship existed between individual stimulation outcomes and either 107 

corresponding performance on reward-related behaviors, local field potential recordings from 108 

the NAc sub-regions or variation in electrode localization within each NAc sub-region.   109 

Methods and Materials    110 

Animals and Surgery  111 

       Male Sprague-Dawley rats were purchased from Charles River (Shrewsbury, MA) at 60 112 

days of age and individually housed using a reverse 12 hour light/dark schedule with house 113 

chow and water available ad libitum. Following habituation to the animal facility, rats were 114 

implanted with a custom electrode array that targeted both the NAc core and shell bilaterally, 115 

according to the following coordinates relative to bregma: 1.6 mm anterior; ± 1 and 2.5 mm 116 

lateral; and 7.6 mm ventral. Animals were excluded from analysis if later histological 117 

examination revealed electrode locations outside the NAc core or shell. All experiments were 118 

carried out in accordance with the NIH Guide for the Care and Use of Laboratory Animals (NIH 119 

Publications No. 80-23) revised in 1996 and approved by the Institutional Animal Care and Use 120 

Committee at Dartmouth College. 121 

Binge Eating Paradigm  122 

  Following recovery from surgery (~1 week), rats began a schedule of limited access to a 123 

palatable high-fat, high-sugar diet (“sweet-fat diet”), which contained 19% protein, 36.2% 124 

carbohydrates, and 44.8% fat by calories and 4.6 kcal/g (Teklad Diets 06415, South Easton, 125 

MA) as previously described (Berner et al., 2008). The sweet-fat diet was provided to the rats in 126 

addition to house chow and water within stimulation chambers for 2 hour sessions during 4-5 127 

sessions per week (irregular schedule). Following 16-20 sessions, the rats were consuming a 128 
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stable and significant amount of sweet-fat food during each session (mean = 54% of their daily 129 

caloric intake ± 12% [1 standard deviation]). This “binge-like” feeding has been shown to result 130 

in more significant weight gain than was observed with continuous access to the same diet -- as 131 

is used in models of diet-induced obesity (Berner et al., 2008). Prior work has also 132 

demonstrated that chronic, irregular, limited access to palatable food can result in compulsive 133 

feeding behavior(Oswald et al., 2011;Heal et al., 2016) and increased impulsivity (Vickers et al., 134 

2017). Palatable sweet-fat and regular house chow consumption were measured during all 135 

limited access sessions.    136 

Stimulation  137 

  To deliver stimulation, a current-controlled stimulator (PlexStim, Plexon, Plano, TX) was 138 

used to generate a continuous train of biphasic pulses. The output of the stimulator (current and 139 

voltage) was verified visually for each rat before and after each stimulation session using a 140 

factory-calibrated oscilloscope (TPS2002C, Tektronix, Beaverton, OR). Stimulation was initiated 141 

immediately before animals had access to the sweet-fat food and turned off at the completion of 142 

the 2 hour session.   143 

Overall Design  144 

  Experiment 1 (N=8 rats) was used to determine the optimal stimulation parameters to 145 

reduce binge size using our custom electrode arrays targeting the NAc core or shell. Experiment 146 

2 (N=9) used a crossover design in a separate cohort of rats to test DBS targeting the NAc core 147 

or shell with the optimized stimulation parameters identified in Experiment 1. Last, rats from 148 

Experiment 1 and 2 that had received the optimized stimulation parameters in both NAc targets 149 

and remained in good health (N=12) continued on to Experiment 3 and underwent behavioral 150 

and electrophysiological characterization (Figure 1A).   151 

Experiment 1 - Identifying optimal stimulation parameters  152 

  To identify the optimal stimulation parameters to alter feeding behavior, we tested an 153 

array of published stimulation intensities (range: 150 to 500 µA) and electrode contact 154 
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configurations (monopolar vs. bipolar using our custom arrays within the targeted brain 155 

structures (NAc core and shell). These permutations alter the size and shape of the electric field 156 

and the resulting effect that stimulation has on binge eating. Thus, custom electrodes were 157 

implanted in the NAc core and shell bilaterally in a cohort of rats (N=8). Rats were randomly 158 

divided into two groups for a crossover design with different initial stimulation targets (core or 159 

shell). Animals were then trained in the binge eating paradigm until a stable baseline of sweet-160 

fat food intake was established (15-20 sessions over 3-4 weeks) before DBS sessions were 161 

initiated. Stimulation current was increased during each subsequent session, starting at 150 µA 162 

and progressing to 500 µA in a bipolar configuration (between two wires within the target, 163 

separated by ~1mm in the dorsal-ventral plane), and then from 150 µA to 300 µA in a 164 

monopolar configuration (between one wire in the target and a skull screw over lambda). The 165 

rats then entered a period without DBS in which the effect of prior stimulation was allowed to 166 

washout before crossing over to DBS treatment of the other site. Following the washout and a 167 

return to baseline, we resumed stimulation in the other NAc target and the same titration of 168 

stimulation parameters was repeated at the second target of DBS across multiple sessions 169 

(Figure 1A).   170 

Experiment 2 - Testing NAc core vs. shell stimulation using fixed stimulation parameters  171 

  Experiment 1 was designed to identify stimulation parameters that were similarly 172 

effective in either the NAc core or shell--bipolar stimulation at 300 µA or monopolar stimulation 173 

at 200 µA. We elected to use monopolar stimulation (biphasic, 90 μsec pulse width, 130 Hz, 200 174 

μA) as it produced a lower charge density at the electrode surface, which decreases the 175 

probability of neuronal injury (Kuncel and Grill, 2004). In a new cohort of rats, (N=9) electrodes 176 

were implanted and rats were randomized to receive initial stimulation in either the NAc core or 177 

shell. After a stable baseline of sweet-fat diet consumption was established during limited 178 

access sessions (following 15-20 sessions), rats received 3 sessions of stimulation followed by 179 
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3 sham post-stimulation sessions. Animals then entered a 2 week washout phase to re-180 

establish baseline prior to crossover and stimulation in the other target (Figure 1A).   181 

Data Analysis  182 

Experiment 1 data analysis  183 

       In order to evaluate the effect of DBS in Experiment 1, we defined a meaningful DBS 184 

response as any change in consumption that exceeded 2 standard deviations of baseline 185 

consumption. To calculate the standard deviation of consumption, we pooled baseline binge 186 

eating data from multiple cohorts to characterize variation in baseline binge size within the 187 

population (36 rats, 3 baseline sessions per rat, 108 total baseline observations). The data 188 

came from all of the animals in this study, a previously published study (Doucette et al., 2015), 189 

and unpublished data. Each observation was recorded as the percent change from that rats 190 

average baseline binge size. This “normalized variance” was done to account for the known 191 

variation between animals in their average binge size at baseline. This session to session 192 

normalized variation in binge size was found to be normally distributed, centered at 0% change 193 

with a standard deviation of 13% (Figure 1B). Thus, for Experiment 1, if an animal’s binge size 194 

during a stimulation session was greater or less than 26% (2 standard deviations) of its average 195 

baseline binge size it was considered a meaningful change induced by stimulation.  196 

Experiment 2 data analysis  197 

  Group-based analysis  198 

  We used repeated measures analysis of variance (RMANOVA) and included 3 sessions 199 

of baseline, stimulation and post-stimulation data from each animal. Each stimulation target was 200 

analyzed independently, as there were no significant differences in binge size between the 201 

baseline periods on either side of the crossover. Session number (1-3) and session type 202 

(baseline, stimulation, and post-stimulation) were assumed to be categorical variables. When 203 

the analysis indicated that differences existed between session types, post-hoc pair-wise 204 
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comparisons between groups were made using the Bonferroni method to correct for multiple 205 

comparisons.  206 

  Individual-based analysis  207 

  The presence or absence of a response to stimulation was correlated with reward-208 

related behavior and electrophysiological recordings in each animal. Individual rats were 209 

classified as either non-responders [NR] or responders [R] to stimulation at each target based 210 

on the criteria used in Experiment 1 (greater than a 2 SD or 26% change in binge size from 211 

each animal’s baseline average) and this change had to be observed in all three stimulation 212 

sessions for a given target.  213 

Experiment 3 - Behavioral and electrical characterization (without stimulation)  214 

  All rats from Experiment 2 (N=9) and those rats from Experiment 1 tested with the 215 

stimulation parameters chosen for Experiment 2 in both targets (N=3) were included in 216 

Experiment 3 (N=12). These animals underwent subsequent behavioral and 217 

electrophysiological characterization starting two weeks after the conclusion of Experiment 1 or 218 

2. All rats underwent behavioral testing followed by another 2 week washout and then 219 

electrophysiological characterization of each stimulation site, but all without stimulation 220 

(Figure 1A).   221 

Reward-related behavior (order of testing)   222 

  To determine if variation in reward-related behavior could capture the underlying network 223 

differences that may be responsible for the variation in DBS outcomes, 3 reward-related 224 

behaviors were assessed. Behavioral outcomes were compared between NR and R groups for 225 

each DBS target using a two-way t-test. A significance threshold of p<0.05 was used to screen 226 

for behaviors with a potential relationship with stimulation outcomes.    227 

  Increased sweet-fat diet intake with food deprivation (1)   228 

  Food deprivation (24 hours) was used to push the energy homeostasis system towards 229 

an orexigenic state. Individual variation in the resultant changes in binge size from baseline was 230 
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measured. Thus, the primary outcome was the percent change in binge size from each rat’s 231 

baseline average to that observed following food deprivation.     232 

  Locomotor response to novelty (2)  233 

  Locomotor response to novelty was chosen because of previous correlations between 234 

variation in this behavior (high and low responders) and a sensation-seeking behavioral 235 

phenotype linked to a higher risk for developing disorders of appetitive behavior (Piazza et al., 236 

1989;Belin et al., 2008). Briefly, rats were placed in a 1.5 ft X 3 ft black plastic chamber that was 237 

novel to the animal and allowed to freely explore for 50 minutes while video was recorded. 238 

Video files were analyzed offline using automated contrast-based tracking (Cineplex software, 239 

Plexon, Plano, TX) to calculate the distance traveled (primary outcome).   240 

  Conditioned place preference (CPP) (3)  241 

  CPP was assessed due to the known involvement of the NAc in CPP (Tzschentke, 242 

2007). We used an established 2-chamber biased design paradigm, pairing the sweet-fat food 243 

with the individual animal’s non-preferred chamber and regular house chow with the preferred 244 

chamber (30 minute pairing, 1 pairing per day, alternating between the 2 chambers for 4 days) 245 

(Calcagnetti and Schechter, 1993; Valjent et al., 2006). Baseline and test sessions (15 minutes) 246 

were video recorded and automatically scored using contrast-based tracking to assess time 247 

spent in each chamber. The primary outcome was the change in the percentage of time spent in 248 

the initially non-preferred chamber (paired with sweet-fat diet).  249 

Local field potential (LFP) recording  250 

  We recorded local field potential (LFP) activity bilaterally from the NAc core and shell of 251 

each animal to assess whether variation of intrinsic network characteristics in the absence of 252 

stimulation could predict stimulation outcomes. Rats were tethered in a neutral chamber through 253 

a commutator to a Plexon data acquisition system while time-synchronized video images were 254 

recorded (Plexon, Plano, Tx) for offline analysis. Using the video images, rest intervals were 255 

manually identified as extended periods of inactivity, and only recordings from these intervals 256 
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were used in the analysis. We used well-established frequency ranges from the rodent literature 257 

and standard LFP signal processing to characterize the power spectral densities (PSDs) within, 258 

and coherence between brain regions (bilateral NAc core and shell) for each animal using 259 

custom code written using Matlab R2015b (Cohen et al., 2009; McCracken and Grace, 2009; 260 

Catanese et al., 2016) (Supplemental Methods). Each rat recording session produced 60 LFP 261 

features: 24 measures of power (6 frequency bands X 4 brain locations) and 36 measures of 262 

coherence (6 frequency bands X 6 possible location pairs, Figure 5A and B). We obtained two 263 

recordings from each animal that were separated in time by between 2 and 71 days to 264 

control for potential day to day variation in LFPs. 265 

Linking ventral striatal activity to stimulation outcomes   266 

  As there were many more predictor variables than number of animals, we employed a 267 

machine learning approach to determine if there was information within the LFP signals that 268 

correlated with stimulation outcomes. We used a penalized regression method, lasso, to reduce 269 

the dimensionality of the predictor variable set by removing LFP features that contained no 270 

information or redundant information and extracted the smallest combination of LFP features 271 

that most accurately described the observed variation in stimulation outcomes. The Matlab 272 

package Glmnet was used to implement the lasso using a 4-fold cross-validation scheme with 273 

100 repetitions for each model (Core R vs. NR, Shell R vs. NR, and Core vs. Shell). For the 274 

Core vs. Shell model, each animal’s optimal stimulation target was defined as the stimulation 275 

target that produced the largest average reduction in binge size (rats without a significant 276 

reduction were excluded). The accuracy of the models is reported as the average cross-277 

validated accuracy. In order to determine if the achieved accuracies were meaningfully better 278 

then chance, the entire process described above was repeated for ten random permutations of 279 

the data for each model type. The permutations randomized the relationship between the binary 280 

stimulation outcomes (R=1, NR=0) or optimal target assignment (Core =1, Shell=0) with the 281 

individual rat LFP feature sets to maintain the overall structure of the data, but permute the 282 
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relationship of dependent to independent variables. The distribution of accuracies from the 283 

observed data was compared to the distribution from the permuted data using the Mann-284 

Whitney U test, and the U test statistic was converted into a Cohen’s d effect size.   285 

  If the lasso indicated that information existed in the LFP signal, a subsequent 286 

investigation of each LFP feature was carried out to determine which features contained the 287 

most information. For this, logistic regressions were implemented using the Matlab function 288 

fitglm to build models to classify: 1) core responses; 2) shell responses; or 3) core or shell as 289 

the best stimulation target for each animal. For the logistic models, an exhaustive leave-one-out, 290 

cross-validation was used to obtain a distribution of accuracies, and the mean accuracy from 291 

these distributions is reported in Table 1 for the top 5 LFP features from each model type.  292 

Verification of electrode placement  293 

  At the conclusion of all experiments, rats were euthanized, and the brains were 294 

removed, prepared for cryostat sectioning, mounted slides, and stained (thionine) for 295 

histological analysis of electrode placement (Doucette et al., 2015). All animals included in the 296 

results had electrodes located within the target structure (Figure 4C).   297 

Results  298 

Experiment 1 - Identifying optimal stimulation parameters  299 

  Figure 2A summarizes the outcome of stimulation in the NAc core; significant reductions 300 

in food intake were observed with a bipolar configuration (300 µA) in 3/8 animals and with 301 

monopolar configuration (200-300 µA) in 4/8 animals. Figure 2B summarizes the outcomes of 302 

stimulation of the NAc shell in which significant reductions in food intake were observed in a 303 

subset of animals that received bipolar and monopolar stimulation. Interestingly, a subset of the 304 

shell-stimulated animals had significant increases in food intake at higher stimulation intensities. 305 

An example of an individual rat’s food intake across tested stimulation parameters in the NAc 306 

core and shell is shown in Figure 2C. There were significant reductions in food intake during 307 

stimulation in the NAc shell at bipolar 300 µA and monopolar 200 µA with no significant food 308 



 
 

13 
 

intake changes with core stimulation (shell only). Figure 2D illustrates the entire cohort’s 309 

individual response profiles.  310 

  As demonstrated by the example rat, many animals responded to stimulation in only one 311 

of the two NAc sub-regions, despite testing across a range of stimulation parameters. Overall, 312 

this cohort of animals helped us identify a stimulation configuration ([monopolar] and 313 

parameters [130 Hz, 90 µsec pulse width, and 200 µA]) for the custom arrays that was capable 314 

of decreasing food intake when targeting either the NAc core or shell.  315 

Experiment 2 - Testing NAc core vs. shell stimulation using optimized stimulation 316 

parameters     317 

  Figure 3A shows the population outcomes for this cohort (N=9). Using standard 318 

population statistics (RMANOVA), a main effect for session type (baseline, stimulation, post-319 

stimulation) was observed in the shell stimulation set (F(1,8) = 8.171, P = 0.02) and in the core 320 

stimulation set (F(1,7) = 3.772, P = 0.05). In order to determine which sessions were different, 321 

post-hoc pairwise comparisons with Bonferroni adjustment showed a significant difference 322 

between the baseline sessions and each stimulation session (p<0.05), but not between the 323 

baseline sessions and the post-stimulation sessions.  324 

  To determine which rats responded to NAc core and shell stimulation, our a priori 325 

definition of responders and non-responders was used. The individual responses to NAc core 326 

and shell stimulation are shown in Figure 3B and C respectively, with significant individual 327 

responders shown in black and non-responders shown in grey. In this cohort, 5/9 rats 328 

responded to shell stimulation, 4/9 rats responded to core stimulation, and 5/9 rats responded to 329 

stimulation in only one of the two targets. Overall (Experiment 1 and 2), 10/17 rats (~60%) 330 

responded to only one of the two stimulation targets highlighting the need for individualized 331 

targeting. 332 
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Experiment 3 - Behavioral and electrical characterization (without stimulation)  333 

Relationship between stimulation outcomes and reward-related behavior  334 

  It was our hypothesis that innate variation in NAc core and shell networks would be a 335 

common source of variation in reward-related behavior and stimulation outcomes. Thus, we 336 

expected to see a relationship between variation in reward-related tasks and stimulation 337 

outcomes. The behavioral metrics of the 12 rats studied were grouped based on the rat’s 338 

individual response to stimulation as defined previously (R - responder and NR - non-responder 339 

for each stimulation target), differences between R and NR groups were evaluated with t-tests. 340 

None of the behavioral measures differed as a function of the R/NR grouping for either 341 

stimulation site, core- (Figure 4A) or shell- (Figure 4B). 342 

Relationship between stimulation outcomes and electrode localization   343 

  Figure 4C-E illustrates the relationship of anterior-posterior (A-P) position in the core 344 

(Figure 4D) and the shell (Figure 4E) and the corresponding stimulation outcomes (black -- 345 

responders; grey -- non-responders). Variation of electrode location within the A-P dimension 346 

displayed no discernable relationship with stimulation outcomes.    347 

Relationship between stimulation outcomes and local field potential activity   348 

The lasso used information contained within LFP features, existing at the stimulation 349 

sites when stimulation was not present, to determine which response group an animal belonged 350 

to with an average accuracy for core stimulation of 72% (standard deviation ± 5%), 351 

outperforming the models produced from random permutations of the data (49% accuracy ± 352 

11%) with an effect size of 1.13 (Figure 5C). The lasso models classifying shell stimulation 353 

outcomes performed with an average accuracy of 65% (standard deviation ±  354 

7%), outperforming the models produced from random permutations of the data (49% accuracy 355 

± 11%) with an effect size of 1.05 (Figure 5E). Finally, each rat with a significant reduction in 356 

binge size was grouped by the target (NAc core or shell) that produced the largest average 357 

reduction in binge size across the three stimulation sessions. LFP features were able to match 358 
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individual rats to the most effective target for stimulation using lasso with an average accuracy 359 

of 76% (standard deviation ± 7%) compared to 59% (standard deviation ± 8%) for the permuted 360 

data with an effect size of 0.96 (Figure 5D).    361 

It is important to note that each rat had 2 LFP recording sessions separated by up to 70 362 

days, and each recording session was separately incorporated into the model. Therefore, only 363 

LFP features that had stable differences between groups (e.g., R vs. NR) across time were 364 

selected and used by lasso. An example of one of the selected LFP features is shown in Figure 365 

5F, which indicates that the feature varied less between day 1 and day 71 within each animal 366 

than it did between the responder and non-responder groups (Figure 5F -- black horizontal 367 

lines). This finding indicates that the information about stimulation outcomes extracted from LFP 368 

signals was stable through time.    369 

To determine which components of the LFP signal contained the most information about 370 

stimulation outcomes, each feature’s performance in logistic models (% accuracy) was 371 

compared to how commonly those features were included in the (lasso) models (% survival). 372 

Table 1 lists the top 5 LFP features from the logistic and lasso models of core and shell 373 

stimulation outcomes (R vs. NR) and the classification of the optimal target for each animal 374 

(core vs. shell). This exploration revealed a predominance of delta band features in the logistic 375 

models that did not translate to survival in the lasso models suggesting that while delta features 376 

contained the most information about outcomes, this information was likely highly redundant. 377 

Thus, only one delta feature tended to be included in the lasso models. Arrows in the table 378 

indicate the directionality of the feature differences between groups.   379 

Discussion  380 

  These experiments demonstrate that deep brain stimulation of either the nucleus 381 

accumbens core or shell, regions with known differences in brain connectivity and distinct 382 

functional roles in appetitive behaviors, have a similar capacity to reduce “binge-like” feeding 383 

behavior. Experiment 1 demonstrated that despite titration across multiple stimulation 384 
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parameters only subsets of animals showed significant changes in binge behavior with 385 

stimulation in either of the tested targets. Experiment 2 confirmed this finding and an evaluation 386 

of individual responses across the first two experiments illustrated that 66% of rats respond to 387 

DBS in only one of the two targets, supporting the likelihood that personalized target selection 388 

could improve treatment outcomes. Experiment 3 demonstrated that variation in stimulation 389 

outcomes could be, in part, explained by individual differences in recorded local field potential 390 

activity in the absence of stimulation using a machine learning-based approach (lasso). This 391 

implies that activity from the network underlying appetitive behavior could determine the 392 

likelihood that a given individual will achieve a meaningful suppression of binge eating with 393 

stimulation. Most importantly, ventral striatal oscillations were also capable of classifying the 394 

most effective stimulation target for each individual, demonstrating the feasibility of using 395 

network activity under baseline, unstimulated conditions to personalize target selection for 396 

neuromodulation-based treatments. However, it must be noted that these recordings and 397 

predictions were done post hoc, therefore it would be fruitful to verify these results in future work 398 

in which the recordings and predictions are conducted before stimulation. Our results suggest 399 

that such studies would be successful.  400 

  The translational relevance of this work is supported by previously observed treatment 401 

outcome variability in clinical studies of focal stimulation in disorders of appetitive behavior 402 

(Deeb et al., 2016; Terraneo et al., 2016; Azevedo and Mammis, 2017). As an example, in a 403 

study using repetitive transcranial magnetic stimulation of the medial prefrontal cortex for 404 

patients with binge eating, differences in cortical-striatal network activity were shown to correlate 405 

with responses to stimulation (Dunlop et al., 2015). Therefore, it is notable in this study that a 406 

large proportion of animals that failed to respond to stimulation in one brain target (NAc shell), 407 

responded to stimulation in an alternative target (NAc core). Further, results from this study 408 

suggest that network activity recorded without stimulation in the ventral striatum contains 409 

information that can predict the optimal target for stimulation on an individual basis. This finding 410 
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suggests that even in this outbred rat model of binge eating, there are likely individual 411 

differences in the networks perpetuating the behavioral expression of binge eating.   412 

  The assertion that variation exists across individuals in the specific cortical-striatal 413 

networks that underpin the expression of appetitive behavior is supported by a rich literature 414 

including the well characterized spectrum of goal-directed to habitual behavior (Balleine and 415 

O'Doherty, 2010; Robinson et al., 2014; Heilbronner et al., 2016; Voon et al., 2017). Thus, the 416 

striatal sub-regions driving binge-like behavior could vary across individuals and impact which 417 

striatal target (NAc shell vs. core) is most likely to modulate binge behavior. Patients with binge 418 

eating have also been shown to display altered function in distinct networks including the 419 

reward/salience network (Svaldi et al., 2010; Michaelides et al., 2012; Balodis et al., 2013) 420 

and/or the cortical control network (Schienle et al., 2009; Tammela et al., 2010; Hege et al., 421 

2015; Imperatori et al., 2015) using non-invasive methods to assess network activity. Altered 422 

function of one of these networks may be enough to perpetuate binge eating (Dunlop et al., 423 

2016), and our work in rats suggests that even within the ventral striatum, different sub-circuits 424 

(involving the NAc core or shell) may be underlying the perpetuation of binge eating across 425 

individuals. Both clinical and pre-clinical studies suggest that a single stimulation target may not 426 

have the capacity to reduce binge eating across all individuals, and our results suggest that 427 

measures of relevant network activity could guide the selection of an effective stimulation target 428 

for each individual.   429 

  To translate personalized targeting of neuromodulation-based treatments to patients, the 430 

relevant network activity would have to be measured prior to the intervention. This could be 431 

accomplished with the use of intracranial electrodes as is done prior to surgery for epilepsy or 432 

using a non-invasive approach (e.g., MRI-based). Thus, it is important to consider the 433 

relationship between information extracted from LFP oscillations recorded from depth electrodes 434 

reported in this study and non-invasive methods of measuring related network activity in 435 

patients. Our data suggest that inter-hemispheric coherence at low frequencies (delta and theta) 436 
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may be a rich source of information about DBS outcomes. Previous work has established that 437 

correlation exists between these LFP features and fMRI derived measures, including resting 438 

state functional connectivity (Wang et al., 2012; Murta et al., 2015; Jaime et al., 2017). The work 439 

presented in this study supports the inclusion of the ventral striatum and interconnected cortical 440 

regions for future investigations that attempt to use brain activity to guide targeting of focal 441 

stimulation for binge eating and related disorders of appetitive behavior.    442 

  Overall this study was limited by the scope of information used (recordings from bilateral 443 

NAc core and shell when stimulation was not present) to build our predictive models. Thus, 444 

increasing the number of recording sites to include additional regions in the distributed feeding 445 

circuit (e.g., hypothalamic/brainstem, medial prefrontal and orbitofrontal cortex) would be 446 

important for future studies, though this may require placement of intracranial electrodes, as is 447 

done for planning epilepsy surgery. In particular, recording from cortical regions would have 448 

translational relevance to non-invasive clinical measures of brain activity (e.g., EEG) in addition 449 

to MRI derived features. Further, although it is possible that models using brain activity during 450 

the feeding behavior rather than rest would perform better, collecting brain data during binge 451 

eating in patients is much less feasible than collecting resting state data. Future studies will 452 

incorporate pre-stimulation recordings in order to capture network dynamics in treatment naïve 453 

animals. In addition, although using penalized regression (lasso) mitigated the problem of 454 

having many more predictor variables than observations, a larger sample size would allow 455 

testing of the tuned multivariate regressions on naïve datasets and provide more power to relate 456 

variation in electrode location with stimulation outcomes. We cannot rule out the possibility that 457 

variation in targeting within the NAc sub-regions also contributed to stimulation outcome 458 

variation. Inclusion of a female cohort would have increased the generalizability of this study as 459 

more women suffer from binge eating compared to men. Last, none of the reward-related 460 

behaviors tested in this study showed the potential to predict stimulation outcomes, suggesting 461 

that the network dynamics within the NAc that determine the response to DBS differ significantly 462 
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from the network elements driving variation in the tested behaviors. However, it is possible that 463 

alternative reward-related behaviors may better capture the individual variation that underlies 464 

the variation in stimulation outcomes (Robinson et al., 2014; Singer et al., 2016).  465 

Conclusion  466 

  For the treatment of many psychiatric disorders, as demonstrated here in a rat model of 467 

binge eating, a single target for neuromodulation-based treatment may not be effective across 468 

all individuals. Rather, an individualized treatment approach that uses network activity to guide 469 

the personalization of target selection could reduce current treatment outcome variability.   470 
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Figure Legends    670 

 671 

Figure 1. Experimental design and timeline with population data used to define significant 672 

change in binge size from baseline. A. Experimental design for Experiments 1-3 with timeline 673 

shown at bottom. A - acquisition of stable binge size following chronic irregular limited access 674 

and randomization to initial stimulation target, B - baseline sessions, S - stimulation sessions, 675 

PS - post-stimulation sessions, Food Dep - food deprived binge session, LRN - locomotor 676 

response to novelty, CPP - conditioned place preference, LFP Recording - local field potential 677 

recording at two time points (T1 and T2). B. Population baseline data (3 sessions per animal, 678 

N=36 animals) was used to determine an a priori definition of a significant change from baseline 679 

binge size (BS). Distribution of binge size variance across baseline sessions was fit to a normal 680 

distribution with R2 fit shown (1 standard deviation [SD] = 13% change from baseline average). 681 

C. The percentage of animals engaged in feeding behavior through a normalized binge session 682 

had a bimodal distribution. Vertical black lines under the curve provide an individual example of 683 

all of the feeding epochs from a single animal through a binge session.   684 
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 685 

Figure 2. Optimal stimulation parameters were identified that could reduce binge size (BS) 686 

using the electrode arrays targeting the NAc core and shell. A. Titration of stimulation 687 

parameters in NAc core reveals bipolar 300µA and monopolar 200µA are both effective and 688 

roughly equivalent. Bipolar (black) and monopolar (Mono, grey) stimulation configurations with 689 

corresponding current intensities shown on x-axis. B. Titration of stimulation parameters in NAc 690 

shell showing similar effective parameters. C. Example of a single rat’s stimulation response 691 

profile illustrating a shell only responder (core - grey; shell - black). Horizontal lines illustrate ± 2 692 

standard deviations (± 26%). D. Distribution of stimulation response profiles for this cohort 693 

showing that 5/8 animals responded to only one of the two stimulation targets.  694 

 695 

 696 

Figure 3. Deep brain stimulation targeted to either the NAc core or shell produces significant 697 

reductions in binge size using group-based analysis but with clear individual responders and 698 

non-responders. A. Group-based analysis (RMANOVA) with post-hoc evaluation revealed a 699 

significant difference between baseline (B) and stimulation (S) sessions but not between 700 
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baseline and post-stimulation (PS) sessions with either core (black) or shell (grey) targeted 701 

stimulation (* p 0.05, boxplots - 95% CI). B. Individual rat responses to core stimulation with 702 

responders (black, 4/9) and non-responders (grey, 5/9). Horizontal lines illustrate ± 2 standard 703 

deviations (± 26%). C. Individual rat responses to shell stimulation with responders (black, 5/9) 704 

and non-responders (grey, 4/9).    705 

 706 

Figure 4. Variation in reward-related behavior and electrode location does not relate to 707 

stimulation outcomes. Normalized behavioral data grouped by core (A) and shell (B) DBS 708 

response type --responders (R; black) and non-responders (NR; grey). No significant 709 

differences were observed between R and NR groups for the following outcomes: 1) total 710 

distance travelled during locomotor response to novelty (LRN); 2) change in the percent of time 711 

spent in the initially non-preferred chamber during conditioned place preference (CPP); and 3) 712 

percentage increase in food intake after 24 hours of food deprivation (DEP). C. All rats included 713 

in the analysis had electrode locations within the bilateral NAc core and shell with electrodes 714 

localized within the black shapes collapsed onto two representative coronal sections. The 715 

largest variation in electrode positioning occurred along the anterior-posterior (A-P) dimension 716 

(1.4 to 2.4 mm anterior to bregma). No discernable relationship between electrode placement 717 

along the A-P axis in NAc core (D) or shell (E) corresponded to stimulation outcomes -- 718 

responder (black) or non-responder (grey).    719 
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 720 

Figure 5. Local field potential (LFP) features recorded from ventral striatum can classify 721 

individual stimulation outcomes and are stable through time. A. Inset of a raw LFP trace from 722 

the left NAc core with its corresponding power spectral density plot. B. Corresponding 723 

coherence plot showing phase relationships across frequencies between the left NAc shell and 724 

right NAc core. The distribution of accuracies from classifying NAc core (C) and shell (E) 725 

stimulation responders (R) from non-responders (NR) using the observed data (black) and the 726 

permuted data (white) with mean accuracy ± standard deviation listed for each distribution. 727 

Effect sizes between observed and permuted distributions are also shown. D. Distribution of 728 

accuracies classifying the optimal target for stimulation (core vs. shell) for each animal using the 729 

observed data (black) or the permuted data (white). F. The difference in delta coherence 730 

(between the left NAc core and right NAc shell) from recording day T1 to T2 (up to 71 days 731 

apart) was smaller than the difference observed between the groups of animals that 732 

preferentially responded to core or shell.   733 

  734 

  735 

 736 
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Table 1. Top 5 LFP Features for Each Model Type 737 

  Logistic   Lasso  

Core  Features % Accuracy  R Features % Survival 

 CSLCL Δ 0.81  CCLCR hγ 98 

 CSLCR Δ  0.76  CCLCR lγ 88 

  PSR Δ 0.70  CCLSR θ 86 

  CCLCR hγ 0.70  PSL Δ 76 

  CCLCR Δ 0.68  PSR θ 74 

       

Shell  CCLCR Δ 0.73  PCR Δ 86 

  PCR Δ 0.71  CSLSR θ 85 

  CCLSR Δ 0.70  PCR α 81 

  CSLSR θ 0.70  PSL β 58 

  CSLCL lγ 0.68  CCLCR β 53 

       

Core  CCLCR hγ 0.79  CCLSR Δ 60 

vs.  PCR Δ 0.78  CSLSR θ 55 

Shell  CCLCR β 0.77  PSL θ 51 

  CCLCR Δ 0.76  PCR Δ 49 

  CSRCR θ 0.75  CSLSR lγ 12 

 738 

Table 1. The top 5 local field potential features used in single predictor (logistic) and multi-739 

predictor (lasso) models of NAc core and shell stimulation outcomes. Features are described by 740 

location (Core Left -CL, Core Right -CR, Shell Left -SL, and Shell Right -SR) and frequency 741 

band (delta -Δ, theta -θ, alpha -α, beta -β, low gamma -lγ, and high gamma -hγ). Power features 742 
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are represented with location and frequency band (e.g., PSR Δ) and coherence features are 743 

represented with location pairs and frequency band (e.g., CSLCL Δ). Logistic features were 744 

ranked by the average % accuracy of the single variable logistic model using leave one out 745 

cross-validation. Lasso features were ranked by how frequently they were used in the lasso 746 

models from 100 iterations of cross-validation (% survival). The top five features that were 747 

common across logistic and lasso models for a given classification type (e.g., core response [R] 748 

vs. non-response) are highlighted in grey. Arrows to the left of the LFP feature indicate whether 749 

higher (up) or lower (down) LFP feature values increased the probability of a DBS response (R), 750 

or in the Core vs. Shell model the direction that increased the likelihood that Core is the better 751 

target for that animal.   752 

 753 


