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SUMMARY

Value-based decision making often involves integra-
tion of reward outcomes over time, but this becomes
considerably more challenging if reward assign-
ments on alternative options are probabilistic and
non-stationary. Despite the existence of various
models for optimally integrating reward under uncer-
tainty, the underlying neural mechanisms are still
unknown. Here we propose that reward-dependent
metaplasticity (RDMP) can provide a plausiblemech-
anism for both integration of reward under uncer-
tainty and estimation of uncertainty itself. We show
that a model based on RDMP can robustly perform
the probabilistic reversal learning task via dynamic
adjustment of learning based on reward feedback,
while changes in its activity signal unexpected uncer-
tainty. The model predicts time-dependent and
choice-specific learning rates that strongly depend
on reward history. Key predictions from this model
were confirmed with behavioral data from non-hu-
man primates. Overall, our results suggest that meta-
plasticity can provide a neural substrate for adaptive
learning and choice under uncertainty.

INTRODUCTION

Our knowledge of the world is continuously modified by the out-

comes of a myriad of decisions we make over time. For this

learning to be successful, the brain has to adjust the way it re-

sponds to and integrates each reward outcome, since stim-

ulus-reward or action-reward contingencies can unpredictably

change over time in natural environments. For example, in an

environment where reward probability associated with alterna-

tive choices changes frequently (i.e., volatile environment),

learning should be fast so that only the most recent outcomes

are considered in the estimation of reward probabilities. By
contrast, in a stable environment where reward probabilities

do not change very often, learning should be slow to obtain a

more accurate estimate of reward values. Indeed, it has been

experimentally demonstrated that humans are able to adjust

their learning or learning rates based on the reward uncertainty

and volatility in a given environment (Behrens et al., 2007; Krugel

et al., 2009; Nassar et al., 2010). However, neural mechanisms

underlying these adjustments are relatively unknown.

Some reinforcement learning (RL) models assume that the

proper learning rates in a given environment can be estimated

using optimization processes. An example of such an optimiza-

tion process is meta-learning, which maximizes the average of

reward via modification of the learning rates based on a compar-

ison between the medium-term and long-term running averages

of the reward rate (Doya, 2002; Schweighofer and Doya, 2003;

Soltani et al., 2006). However, it is unclear whether such an algo-

rithm can determine the proper learning rates in dynamic tasks

because the time constants for computing these reward

averages also have to be adjusted according to the uncertainty

and volatility of the environment. In contrast, model-based or

Bayesian approaches try to learn the structure of the environ-

ment and its parameters in order to optimally integrate reward

feedback (Behrens et al., 2007; Courville et al., 2006; Daw

et al., 2005, 2006; Hampton et al., 2006;Mathys et al., 2011; Nas-

sar et al., 2010, 2012; Payzan-LeNestour and Bossaerts, 2011;

Yu and Dayan, 2005). For example, a Bayesian learner can as-

sume different levels of uncertainty in the environment to esti-

mate reward probability optimally (Behrens et al., 2007). Other

models deal with reward uncertainty by detecting changes in

the environment to adapt learning (Costa et al., 2015; Jang

et al., 2015; McGuire et al., 2014; Nassar et al., 2010, 2012).

Despite the success of these Bayesian models in capturing

behavioral data and observation of neural correlates of variables

in these models, it is unclear how the correct model of the envi-

ronment can be learned or how different components of these

models can be implemented in the brain.

We hypothesized that certain brain areas might be endowed

with synaptic mechanisms that use reward history to determine

the level of synaptic plasticity and, therefore, adjust learning in

the absence of any explicit optimization, or before a model of
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Figure 1. Probabilistic Reversal Learning

Task and Reward Uncertainty

(A) Timeline of the PRL task and an example

reward schedule. Subjects select between two

options (e.g., red and green targets) and receive

reward feedback on every trial. The reward is as-

signed probabilistically to one of the two targets

while the better target changes between blocks of

trials. In the shown example, probability of reward

on the green target (pR(g)) changes between

0.8 and 0.2 after every 20 trials. Each cross shows

reward assignment on a given trial.

(B) Performance of the RL(1) model as a function

of the learning rate in three environments with

different levels of uncertainty or volatility. The

diamond sign shows the optimal learning rate for

each environment.

(C) The optimal learning rate for the RL(1) model in

different environments quantified with reward

probability on the better and worse options and

the block length, L. The optimal learning rate

was smaller for more stable, and to a lesser

extent, for more uncertain environments. White

squares indicate sample environments chosen for

further tests.
the environment can be fully learned. Specifically, we assumed

that such adjustment of learning can be implemented via

synaptic metaplasticity. Metaplasticity refers to experimentally

observed changes in the synaptic state that shape the direction,

magnitude, and duration of future synaptic changes without any

observable change in the efficacy of synaptic transmission

(Abraham, 2008; Abraham and Bear, 1996; Hulme et al., 2013;

M€uller-Dahlhaus and Ziemann, 2015). Here, we present a bio-

physically plausible model based on reward-dependent meta-

plasticity (RDMP) that can adjust learning according to reward

uncertainty. In our model, metaplastic synapses have multiple

levels of stability (meta-states) associated with two levels of syn-

aptic efficacy and undergo reward-dependent changes. To test

our model, we simulated choice behavior during a dynamic

learning and decision-making task known as probabilistic

reversal learning (PRL), which has been extensively used to

study adaptive learning and decision making in health and dis-

ease (Cools et al., 2001; Costa et al., 2015; Rudebeck et al.,

2013; Rygula et al., 2010; Swainson et al., 2000).

In this study, we demonstrate that based on reward feedback,

RDMP allows synapses to occupy states with different levels of

stability and thus can adjust learning according to the uncer-

tainty and volatility of the environment.We show that amodel en-

dowedwith RDMPnot only can perform the PRL task over awide

range of model and task parameters, but also provides specific

predictions that differ from those of heuristic RL models, and

Bayesian models that require explicit knowledge of the task

structure. Using an extensive set of behavioral data from a recent

study in non-human primates during the PRL task (Donahue and

Lee, 2015), we provide experimental evidence for some of the

model’s predictions and thus, the contribution of metaplasticity

to behavior. Finally, we show that changes in the activity of

reward-encoding neurons with metaplastic synapses can be

used to estimate reward volatility for which a neural correlate

has been observed (Behrens et al., 2007). Overall, our results
402 Neuron 94, 401–414, April 19, 2017
suggest that reward-dependent metaplasticity can provide a

robust neural substrate for adaptive learning and choice under

uncertainty, and moreover, enables computations of high-level

signals such as volatility.

RESULTS

Learning and Choice Under Reward Uncertainty
As a platform to study learning and choice under reward uncer-

tainty, we focused on behavior during a PRL task. In this task, the

subject selects between two alternative options (e.g., colored

targets), which deliver reward probabilistically (Figure 1A). The

probabilities of reward on the green and red options are comple-

mentary, for example 0.8 on the green and 0.2 on the red target.

However, unknown to the subject, these probabilities switch af-

ter a certain number of trials referred to as the block length,

L. The combination of reward probability on the better (more

rewarding) and worse (less rewarding) options, pR(B) and

pR(W), and block length defines an environment in this task

(e.g., 0.8/0.2 schedule with L = 80). Performing this task requires

selection of the better option within a given block of trials, which

is complicated due to two factors: (1) the probabilistic nature of

reward assignment or expected ‘‘uncertainty’’; and (2) switches

in reward probabilities between blocks of trials (reversals), result-

ing in unexpected uncertainty, also referred to as ‘‘volatility.’’

To detect the better option within each block of trials in the

PRL task, the subject has to continuously update the estimates

for reward value of the two options based on reward feedback.

However, for models with constant learning rates, such as a sim-

ple RL model with one learning parameter (RL(1)), the optimal

learning rates depend on the levels of uncertainty and volatility

in the environment (Figures 1B and 1C). In a relatively stable envi-

ronment with reward probabilities far from 0.5 (0.8/0.2 schedule

with L = 80), a moderate value of the learning rate produces

optimal performance (Figure 1B). However, in a more volatile



Figure 2. The RDMP Model and Its Response to Three Environments with Different Levels of Uncertainty or Volatility

(A) The schematic of metaplastic synapses. Metaplastic synapses havemultiple meta-states associatedwith each of the two levels of synaptic efficacy: weak (W)

and strong (S). Potentiation and depression events result in stochastic transitions betweenmeta-stateswith different levels of stability and are indicated by arrows

(in gold and cyan for potentiation and depression events, respectively) and quantified by different transition probabilities (q1 > q2 > q3 > q4 and p1 > p2 > p3). We

also refer to more unstable and stable meta-states as ‘‘shallower’’ and ‘‘deeper’’ meta-states, respectively.

(B) For synapses associated with the green target, the average (over many blocks) fractions of synapses in different strong (top) and weak (bottom) meta-states

are plotted over time in the stable environment (0.8/0.2 schedule with L = 80). The x axis color indicates the better option within a given block and the inset shows

the steady state of the fraction of synapses in each of four meta-states (computed by averaging over the last 2 trials within each block).

(C and D) The same as (B) but the results for the volatile (0.8/0.2 schedule with L = 20) (C) and uncertain environments (0.6/0.4 schedule with L = 80) (D) are shown.
environment (0.8/0.2 schedule with L = 20), a higher learning rate

is more desirable. Finally, in an environment with greater uncer-

tainty (0.6/0.4 schedule with L = 80), a lower learning rate is

required to obtain a better estimate of reward value. Overall,

the optimal learning rate of RL(1) increases as the environment

becomes more volatile and slightly decreases when the environ-

ment becomes more uncertain (Figure 1C).

These results demonstrate an inherent tradeoff between

adaptability (i.e., fast response to changes in the environment)

and precision (i.e., correct estimation of reward probabilities)

during learning and choice under uncertainty. Tackling this

tradeoff requires the brain to adjust the learning rate either

across time or across environments since the optimal learning

rate could vary substantially depending on the levels of uncer-

tainty and volatility present.

RDMP as a Neural Mechanism for Adaptive Learning
Under Reward Uncertainty
Here, we suggest that RDMP can provide a plausible mecha-

nism for learning and choice under uncertainty and simulate

the behavior of an example model based on RDMP during the

PRL task. We compare the behavior of this model with three

sets of models that rely on different mechanisms to deal with un-

certainty and volatility in the PRL task (see STAR Methods). In

our model, neurons encoding the reward value of different op-

tions (value-encoding neurons) receive their inputs via meta-

plastic synapses that undergo a stochastic RDMP learning
rule. These metaplastic synapses have multiple meta-states

with different levels of stability associated with two levels of syn-

aptic efficacy: weak and strong. The output of value-encoding

neurons associated with a given option reflects the overall

synaptic efficacy of metaplastic synapses onto them. Because

there are two levels of synaptic efficacy, the overall synaptic ef-

ficacy for each set of metaplastic synapses can be quantified as

the fraction of synapses in strong meta-states, which we refer to

as the ‘‘synaptic strength.’’ Importantly, the RDMP learning rule

enables the synaptic strengths to estimate the probability of

reward for alternative options, whereas the model selects be-

tween the two options stochastically based on a probability

given by the difference in synaptic strengths for the two options

(see STAR Methods).

Metaplastic synapses can change their states stochastically

depending on the choice and reward outcome at the end of

each trial. We assumed that synapses associated with the cho-

sen option are potentiated on rewarded trials and depressed on

unrewarded trials (Figure 2A; see STAR Methods). Because only

one of the two options is assignedwith reward on each trial of the

PRL task, we also assumed that synapses associated with the

unchosen option are depressed on rewarded trials and potenti-

ated on unrewarded trials. Due to the stochastic nature of

synaptic transitions, potentiation or depression events may or

may not change synaptic efficacy of a particular synapse, but

at the population level, result in a well-defined learning rule

(Equations 3 and 4 in STAR Methods).
Neuron 94, 401–414, April 19, 2017 403



We simulated the behavior of the model in a few environments

with different levels of uncertainty and volatility, using the same

set of parameters. Toward the end of each block in the stable

environment, synapses associated with the better option

increasingly occupied more stable strong meta-states, while a

small fraction of them occupied the most unstable weak meta-

states (W1; Figure 2B). The volatile environment, on the other

hand, made these synapses occupy mainly unstable strong

meta-states or the most unstable weak meta-states (Figure 2C).

This happened because, in the volatile environment, there was

not enough time for synapses undergoing potentiation to occupy

stable strong meta-states, whereas this was possible in the sta-

ble environment. In addition to the block length, the fractions of

synapses in different meta-states were also influenced by

reward probabilities (hence uncertainty). As the reward probabil-

ities became closer to 0.5, thus increasing uncertainty, more

synapses occupied more unstable weak meta-states and the

fractions of synapses in strong meta-states monotonically

decreased for more stable meta-states (Figure 2D). This

happened because with more variable reward assignment, syn-

apses associated with the better option were less likely to tran-

sition to stable (deep) meta-states. Overall, these results indicate

that metaplastic synapses can adjust to reward statistics in the

environment, in terms of both the volatility and uncertainty.

Adjustment of Learning Over Time
The fractions of synapses in different meta-states show how

metaplastic synapses adjust to reward statistics in a given envi-

ronment. Because different meta-states have different transition

probabilities, those fractions also determine the speed of

learning at a given point in time. To illustrate these, we calculated

the ‘‘effective’’ learning rates as a function of the trial number af-

ter a reversal for the two possible outcomes of reward assign-

ment. For any point during a block, the effective learning rates

provide a single set of learning rates by considering the total

change in the efficacy over all meta-states (see STAR Methods).

By definition, the product of the effective learning rate and the

fraction of synapses in weak (strong) meta-states are equal to

the increase (decrease) in synaptic strength.

We found that the effective learning rates changed over time

and depended on whether the reward was assigned to the better

or worse option. For synapses associated with the better option,

the effective learning rate on trials when the worse option was

assigned with reward, KB-(t), monotonically decreased over

time after a reversal (solid cyan curve in Figure 3A). At the

same time, however, the effective learning rate on trials when

the better option was assigned with reward, KB+(t), monotoni-

cally increased. The amount of changes in the effective learning

rates depended on the uncertainty and volatility such that these

changes were larger for more certain and stable environments

(see below).

At the beginning of each reversal in the stable environment,

synapses associated with the better option in the new block

were mainly in stable weak meta-states or unstable strong

meta-states since these synapses were associated with the

worse option in the previous block (Figure 2B). On trials when

reward was assigned to the better option, synapses in the stable

weakmeta-states slowly transition to strong meta-states, result-
404 Neuron 94, 401–414, April 19, 2017
ing in a small effective learning rate at the beginning of each

block (solid gold curve, Figure 3A). In contrast, on trials when

reward was assigned to the worse option, synapses in the unsta-

ble strongmeta-states quickly transition to weakmeta-states re-

sulting in a large value for the effective learning rate on those

trials. Both of these effective learning rates change over time

as the distribution of synapses in different meta-states adjusts

to the recent reward statistics (Figures 2B–2D).

The change in the effective learning rates over time as well as

the difference between the two learning rates were sensitive to

reward uncertainty and volatility in the environment. Specifically,

the difference between KB+(t) and KB-(t) wasmore pronounced in

a more certain environment than in an uncertain one (compare

solid and dashed curves in Figure 3A). Moreover, KB+(t) rose to

a higher value while KB-(t) fell to a lower value in a stable than in

a volatile environment (compare solid curves in Figure 3A and

its inset). The time-dependent adjustment to reward statistics

was not specific to the example environments andwas observed

over a large set of environments with different levels of uncer-

tainty and volatility. At the beginning of each block, KB+(t) was

smaller than KB-(t) and this difference was stronger (more

negative) for more certain or stable environments (Figure 3B).

Over time, KB+(t) increased while KB-(t) decreased such that

(KB+ � KB-) becomes positive later in the block (Figures 3C and

3D). The difference between the steady state of the two learning

rates increased as uncertainty and/or volatility decreased.

Although our model based on RDMP suggests that learning

rates depend on whether the reward outcome supports the bet-

ter or worse choice alternative, these rates are often estimated in

empirical studies based on the reward outcomes independently

of choice alternatives. To estimate such learning rates in our

model, we computed the effective learning rates on rewarded

and unrewarded trials, Krew(t) and Kunr(t), by averaging the effec-

tive learning rates based on the reward outcome on a given trial

(Equation 8 in STARMethods). We found that Krew(t) was smaller

than Kunr(t) at the beginning of each block (Figure S1). However,

as the model spent more time in a block, Krew(t) increased,

whereas Kunr(t) decreased such that Krew(t) became larger than

Kunr(t) later in a block. These changes resulted in an overall larger

learning rate for rewarded than unrewarded trials, as observed in

previous experiments (Donahue and Lee, 2015; Frank et al.,

2007, 2009; Niv et al., 2012). In addition to changes in the

learning rates over time (i.e., trial to trial), our model also predicts

that the difference between the overall learning rates on re-

warded and unrewarded trials should decrease with the uncer-

tainty in the environment (Figure S1F). This prediction can be

tested in future experiments.

Overall, these results show that metaplastic synapses adjust to

reward statistics in the environment. This gives rise to time-

dependent learning rates that are different for synapses associ-

atedwith the two alternative options (i.e., learning rates are choice

specific), and on rewarded and unrewarded trials. For simplicity,

here we used a specific implementation of RDMP (Equation 2 in

STAR Methods), which guarantees that at the steady state, the

effective learning rate for reward assignment on the better option

is larger than the one on theworse option. Nevertheless, we found

that most RDMP models with different formulations of transition

probabilities exhibit such behavior, as long as there is an order



Figure 3. The RDMP Model Adjusts Learning Over Time According to Reward Uncertainty and Volatility

(A) The time course of the effective learning rate for when the reward was assigned to the better (KB+) or worse (KB-) option during a given block in the stable

(0.8/0.2 schedule with L = 80) and uncertain (0.6/0.4 schedule with L = 80) environments. The inset shows the results for the volatile environment (0.8/0.2 reward

schedule with L = 20).

(B–D) The difference between the effective learning rates at three time points after a reversal in different environments. Overall,KB+ increasedwhileKB- decreased

and their difference was larger for more certain and/or stable environments.

(E) Changes in model’s response to reward feedback over time. Plotted are the changes in the synaptic strength in response to reward assignment on the better

(DFB+) or worse option (DFB-), as well as the overall change in the synaptic strength (DF) as a function of the trial number after a reversal in the stable and uncertain

environments.

(F–H) The overall change in the synaptic strength at three time points after a reversal in different environments. The model’s response to reward feedback was

stronger for more certain and/or volatile environments right after reversals and this difference slowly decreased over time.
in the transitions between meta-states resulting in shallow and

deep meta-states (data not shown).

Adjustments of Model’s Response to Reward
Uncertainty and Volatility
We next examined how the model endowed with metaplasticity

can adjust its response according to the uncertainty and volatility

in the environment. To do so, we computed changes in the

model’s response to reward feedback over time. Because

choice behavior is determined by the synaptic strengths (Equa-

tion 1 in STAR Methods), we first computed changes in the syn-

aptic strengths due to the two types of reward feedback at

different time points within a block of the PRL task.

We found that the change in the synaptic strength when

reward was assigned to the better option, DFB+(t), was large

immediately after a reversal, but then it slowly decreased over

time (red curves in Figure 3E). This happens because immedi-

ately after a reversal, a large fraction of synapses associated

with the currently better (previously worse) option is in weak

meta-states, and the transition of these synapses due to a

potentiation event results in a largeDFB+(t). TheDFB+(t) gradually

decreases as fewer synapses remain in weak meta-states. On

the other hand, the change in the synaptic strength when reward

was assigned to the worse option, DFB-(t), became stronger
(more negative) over the span of about ten trials after a reversal,

and later gradually became weaker (blue curves in Figure 3E).

Importantly, the starting points ofDFB+(t) andDFB-(t) were farther

from zero but changed less over time in the uncertain compared

to stable environment (compare dashed and solid curves in Fig-

ure 3E). In contrast, we observed larger changes in response to

reward feedback over trials within each block of the volatile envi-

ronment (data not shown).

To measure the model’s overall response to both types of

reward feedback, we also computed a weighted average of

the values of DFB+(t) and DFB-(t) based on the reward probability

in a given block (see STAR Methods). In the stable environment,

DF(t) slowly decreased to zero after each reversal as the model

reached the steady state within each block (solid black curve

in Figure 3E). In the uncertain environment, however, DF(t) was

initially lower and decreased to zero more slowly (dashed black

curve in Figure 3E). These results demonstrate the overall ability

of our model to adjust its response based on reward uncertainty

in the environment.

To further examine adjustments due to metaplasticity, we

simulated our model in various environments with different levels

of uncertainty and volatility using one set of parameters. Imme-

diately after each reversal, the model showed the greatest over-

all response to reward feedback; this response was larger for
Neuron 94, 401–414, April 19, 2017 405



more certain and/or volatile environments (Figure 3F). As the

overall response to reward feedback gradually approached

zero, it still remained sensitive to the level of uncertainty in the

environment (Figures 3G and 3H). Our model’s response to

reward feedback was different from that of the RL models with

constant learning rates. For example, in the RL(1) model, the

change in the reward value due to reward feedback was similar

in the stable and volatile environments (Figure S2A). Thus, unlike

our model, the RL(1) model with a constant learning rate cannot

adjust to the volatility in the environment.

Considering the observed adjustments in our model, we then

compared our model’s overall response to both types of reward

feedback using one set of parameters to that of the RL(1) model

with the optimal learning rate in each environment (Figures

S2B–S2D). The dependency on the uncertainty and volatility

was qualitatively similar between the two models (compare Fig-

ures 3F–3H with Figures S2B–S2D). These results show that

metaplasticity enables our model to adjust its behavior to the un-

certainty and volatility consistently with the RL model with the

optimal learning rate; that is, to increase response to reward

feedback in more certain or volatile environments. Our model’s

behavior, however, is not optimal and therefore shows devia-

tions from what is prescribed by the optimal RL(1) model.

To achieve optimality, the RL(1) model prescribes smaller

learning rates for more stable, and to a lesser extent, for more

uncertain environments (Figure 1C). Such adjustment of the

learning rate across environments is very different from how

our model adjusts learning. First, our model naturally adopts

two different time-dependent learning rates for reward assign-

ments on the better and worse options. Second, the adjustment

of these learning rates over time is qualitatively similar for more

uncertain and more volatile environments (Figures 3B–3D),

whereas the RL(1) model prescribes that the optimal learning

rate should increase with larger volatility but slightly decrease

with higher uncertainty (Figure 1C). Nevertheless, the opposite

adjustment for uncertainty only weakly affects the performance

in our model. This is because smaller differences between the

fractions of synapses in the weak and strong meta-states in

more uncertain environments cause smaller responses to

reward feedback than in certain environments, irrespectively of

the learning rates (Figure 3F). Similar behavior occurs in the RL

models due to a smaller reward prediction error in uncertain

compared to certain environments.

Our proposed RDMP model relies on an ordered architecture

for transitions such that there are ‘‘shallow’’ and ‘‘deep’’ meta-

states in the model. This architecture predicts that the model

should be sensitive to the exact sequence of reward assignment.

We found that after a sequence of consecutive reward assign-

ments on the better option, the model responded very differently

to another reward on the better option (congruent trial) versus

reward on the worse option (incongruent trial), depending on

the volatility of the environment (Data S1 and Figure S3). Impor-

tantly, these responses were qualitatively different from those of

the RL and hierarchical Bayesian models.

To summarize, we show that reward-dependent metaplas-

ticity offers a plausible solution for the integration of reward in en-

vironments with different levels of uncertainty and/or volatility.

The RDMP model predicts that the learning rates change over
406 Neuron 94, 401–414, April 19, 2017
time and are different depending on whether the reward is as-

signed to the better or worse option. Moreover, the model pre-

dicts a specific pattern of response after congruent and incon-

gruent sequences of reward assignment, which is qualitatively

different from those of alternative models.

Experimental Evidence
We next tested the predictions of our model by analyzing exper-

imental data from a modified version of the PRL task in which

monkeys selected between two color targets, which provided

reward with different probabilities and magnitudes (Donahue

and Lee, 2015). In this task, the reward was probabilistically as-

signed to the two targets similarly to the original PRL task, while

themagnitude of rewardwas selected randomly froma set of four

values (1, 2, 4, and 8 drops of juice) in order to encourage the an-

imal to more equally select between the two targets (Donahue

and Lee, 2015). Nevertheless, in order to successfully perform

this task, the animal had to learn the probability of reward within

each block by integrating reward feedback since the reward

magnitudes were not predictive of reward assignment.

The first prediction of our model was that the learning rates

change over time and differ depending on whether reward was

assigned to the better or worse option. To test these predictions,

we fit the choice behavior of monkeys with eight models (see

STAR Methods). These include two Bayesian models with

different mechanisms for solving the PRL task (hierarchical and

change-detection Bayesian); two types of RL models, RL(1)

and RL(2), with constant or time-dependent learning rates; the

RDMP model with three meta-states; and a simplified version

of the RDMP model. We used the simplified RDMP (sRDMP) to

circumvent degeneracy in the solution (i.e., lack of unique solu-

tion) for the RDMP model, because each value of the synaptic

strength could potentially correspond to many different distribu-

tions of synapses in different weak and strong meta-states.

Moreover, the simplified RDMP is based on the critical prediction

of the general metaplasticity model (different time-dependent

effective learning rates for reward on the better and worse op-

tions) and thus can be used to detect behavioral contributions of

RDMP independently of its specific implementation. To compare

different models, we applied a 5-fold cross-validation, using the

fit from 80% of the data from a given environment (95 sessions,

about 53,000 trials in total) to predict the choice on the remaining

20% (23 sessions, about 13,000 trials in total). Crucially, the large

amount of behavioral data allowed us to accurately test different

models.

Overall, the RDMP and sRDMP models predicted choice

behavior better than any of the competingmodels in both volatile

and stable environments (Figure 4A). In contrast, the hierarchical

Bayesian and the change-detection Bayesian models with

optimal performance in the PRL task provided the worst fit to

our experimental data. This illustrates that subjects did not

perform optimally in the task. Moreover, the RL models with

time-dependent learning rates predicted choice behavior better

than the RL models with constant learning rates, indicating that

learning rates adjusted over time. We also examined the average

goodness-of-fit over trials within a block. This analysis revealed

that our models predicted the choice behavior better than

competing models, especially immediately after reversals



Figure 4. Model Comparison

(A) Comparison of the goodness of fit for monkeys’

choice behavior during the modified PRL task us-

ing eight different models (BayesH: hierarchical

Bayesian; BayesCD: change-detection Bayesian;

RL-c and RL-t refer to RL models with constant

and time-dependent learning rates). Plotted is the

average negative log likelihood (-LL) over all cross-

validation instances (using test trials) separately for

data in the stable and volatile environments.

Overall, the RDMP and sRDMPmodels provide the

best fit in both environments, whereas the

Bayesian models provide the worst fit.

(B) Goodness of fits for congruent and incongruent

trials. For clarity, only the results for the best RL

model are shown.

(C and D) Goodness of fits across time for different

models during the volatile (C) and stable (D) envi-

ronments. Plotted is the goodness of fit across

time measured as the average -LL per trial, on a

given trial within a block (based on cross-validation

test trials). The blue (black) bars in the inset show

the difference between the average -LL of sRDMP

and RL(2)-t (respectively, hierarchical Bayesian) in

early (trial 2-10) and late (trial 11-20, or 11-80) trials

after a reversal. Overall, the sRDMP and RDMP

(not shown to avoid clutter) models provide the

best fit especially right after reversals.
(Figures 4C and 4D). This is important, because our model

switches its behavior after reversals more slowly than other

models (compare Figures 3E–3H to Figure S2) but this sub-

optimal response captures behavioral data.

The fit based on the sRDMP model also revealed significant

changes in the learning rates over time, as predicted by our

model. Namely, the average estimate of learning rate for trials

when reward was assigned to the better target (KB+) increased

over time within a block, whereas the learning rate on trials

when reward was assigned to the worse target (KB-) decreased

(Figures 5A and 5D). In contrast, the estimated learning rates us-

ing the RL models with time-dependent learning rates showed

small changes over time (Figure S4). Interestingly, the fit based

on the RDMP model revealed similar patterns for the estimated

transition probabilities in the stable and volatile environments

(Figures 5B and 5E). This indicates that similar sets of parame-

ters could have been used to perform the task in both environ-

ments. Moreover, the striking similarity between the estimated

learning rates based on sRDMP and the effective learning rates

based on the estimated transition probabilities in the RDMP

model (compare Figures 5A and 5D with Figures 5C and 5F)

shows the feasibility of our approach in capturing the behavioral

signature of metaplasticity without using a specific implementa-

tion of it. Together, these results strongly support our main pre-

dictions that the effective learning rates change over time and

are different when reward was assigned to the better and worse

options.

We also examined the second prediction of the RDMP model

regarding congruent and incongruent trials, which distinguishes
our model from the hierarchical Bayesian and RL(2) models,

respectively (Figure S3). More specifically, we computed the

average goodness of fit on trials following congruent and incon-

gruent sequences of reward assignment in each environment.

The RDMP, sRDMP, and RL(2) models predicted the monkeys’

choices on trials following congruent sequences of reward

assignment more precisely than the Bayesian models in both en-

vironments (Figure 4B). On incongruent trials, metaplasticity and

Bayesian models provided better fits than the RL(2) model in the

stable environment. In the volatile environment, however, the

Bayesian models predicted monkeys’ choices on incongruent

trials less precisely than the RL(2) model. Overall, the monkeys’

choice behavior was captured better with our models based on

RDMP than the three competing models on both sequences of

reward assignment.

Model’s Robustness
To test the robustness of our model, we first simulated its

behavior in ten separate environments that required very

different optimal learning rates. These environments are defined

with a given pR(B)/pR(W) and L and are labeled in Figure 1C with

white squares. Our model’s simulation used one set of parame-

ters and the resulting performance was compared with that of

the Bayesian models and that of RL models using the optimal

learning rates chosen separately for each environment (Fig-

ure 6A). We found that even using a single set of parameters,

the RDMP model was able to perform only slightly below the hi-

erarchical Bayesian model and RL models that used optimal

learning rates in each environment. However, this does not
Neuron 94, 401–414, April 19, 2017 407



Figure 5. Experimental Evidence for Metaplasticity Revealed by Time-Dependent, Choice-Specific Learning Rates

(A) Plotted are the average estimated learning rates over time on trials when the reward was assigned to the better and worse options. These estimates are

obtained using the session-by-session fit of monkeys’ choice behavior with the sRDMPmodel in the stable environment. The error bars indicate SEM. The insets

show the distributions of the difference between the steady state and initial values of the learning rates across all sessions (separately for each learning rate), and

stars show whether the median (black dashed line) of each distribution is significantly different from zero (p < 0.05).

(B) The distribution of five transition probabilities estimated from fitting the choice behavior using the RDMP model with three meta-states (m = 3). Dashed lines

show the median. The bimodal distribution for p1 values is an indicative of degeneracy in the solution for the RDMP model.

(C) The effective learning rates in the RDMP model based on the median of estimated transition probabilities shown in (B).

(D–F) The same as (A)–(C) but for behavior in the volatile environment. Estimated transition probabilities and the effective learning rates showed similar patterns in

the two environments.
mean that our model performs optimally, since it only adjusts to

reward statistics in the environment without any optimization

process. Not surprisingly, however, the change-detection

Bayesian model, which was designed and tailored for superior

performance in the PRL task, outperformed all other models

and its performance reached to that of an omniscient observer

(Figure 6A).

To test our model’s robustness more rigorously, we also

measured the performance in a ‘‘universe’’ where the level of un-

certainty and volatility changed every few blocks of trials (see

STAR Methods). The result of this simulation showed that there

are certain ranges of learning rates that allow RL(1) and RL(2)

to perform reasonably well in such a dynamic environment (Fig-

ures 6B and 6C). In contrast, our model was able to perform well

over a wide range of parameter values (Figure 6E). This indicates

that learning based on our proposed metaplasticity does not

require fine-tuning to achieve a high level of performance, mainly

because it can flexibly adjust to reward statistics in the

environment.

We also examined how the model’s behavior depends on the

number of weak and strong meta-states,m (Figures 6D–6F). The

model’s performance was high for a wide range of parameter

values (p1 and q1) and for different number of meta-states. This
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shows that even with a small number of meta-states the model

can robustly perform the PRL task. Moreover, the maximal per-

formance of the RMDP model matches that of optimal RL(2) and

exceeds that of optimal RL(1), even though the RDMP model

does not have separate transition probabilities for potentiation

and depression events (Figure 6B, inset). These results indicate

that RDMP can improve performance in dynamic/mixed environ-

ments. Moreover, in such environments, having more meta-

states can slightly worsen the performance and restrict the range

of parameters for which the model’s performance is high (Fig-

ures 6D–6F). These effects occur because with a larger number

of meta-states, synapses can more easily get ‘‘stuck’’ in deep

meta-states for certain sets of parameters, which can reduce

adaptability. Overall, our simulations illustrate that our model

can perform reward integration in dynamic environments over

a wide range of parameters using a small number ofmeta-states.

A recent study has reported that metaplasticity alone does not

provide enough flexibility to capture learning under reward un-

certainty (Iigaya, 2016). To achieve optimal behavior, Iigaya

(2016) incorporated an additional network that computes ex-

pected and unexpected uncertainty over several different time-

scales to detect ‘‘surprise’’ on a specific timescale in order to up-

date corresponding transition rates in the metaplastic network in



Figure 6. The RDMP Model Robustly Performs the PRL Task

(A) Performance of five different models in ten selected environments that require different optimal learning rates (BayesH: hierarchical Bayesian; BayesCD:

change-detection Bayesian). The performance of the RDMPmodel is computed using one set of parameters in all environments, whereas the performance for the

RL(2) and RL(1) models are based on the optimal learning rates chosen separately for each environment. The performance of the omniscient observer that knows

the better option and chooses that option all the time is equal to the actual probability of reward assignment on the better option.

(B) Performance (normalized by the performance of the omniscient observer) of RL(1) in a universe with many different levels of uncertainty/volatility, as a function

of the learning rate. The normalized performance of 0.7 corresponds to chance performance. The inset shows the optimal performance (±SD) of the RL(1), RL(2),

and RDMP models with different number of meta-states (3, 4, and 5), computed by averaging top 2% performance in order to reduce noise. The rectangle

indicates the top 2% performance.

(C) The performance of RL(2) in a universe withmany different levels of uncertainty/volatility, as a function of the learning rates for rewarded and unrewarded trials.

The black curves enclose the top 2% performance.

(D–F) The performance of RDMP in a universe with many different levels of uncertainty/volatility, as a function of the maximum transition probabilities, and for

different numbers of meta-states. The white region indicates parameter values that could result in implausible transitions in the model (see STAR Methods).
an ad hoc fashion. However, Iigaya utilized the same metaplas-

ticity architecture as the cascade model of Fusi et al. (2005),

which was designed to preserve memory over long timescales.

By contrast, our model is more general and includes transi-

tions between meta-states not present in the cascade model

(upward vertical arrows in Figure 2A). These additional meta-

plastic transitions can de-stabilize synapses without changing

their efficacy.

To show that having these metaplastic transitions is critical for

flexibility, we simulated the behavior of a single-parameter

version of our model and the cascade model used by Iigaya (Fig-

ures S5A and S5B) in a universe with many different levels of un-

certainty and volatility. Our model significantly outperformed the

cascade model for most values of x, the single transition proba-

bility that determines the largest transition probability in both

models (Figure S5C). Moreover, the difference in performance

between the two models increased with a larger number of

meta-states. Note that the chance level for the normalized per-

formance is 0.7 due to the probabilistic nature of the PRL task.

These results suggest that metaplastic transitions that can de-
stabilize synapses without changing their efficacy are critical

for achieving adaptability in reward integration under uncer-

tainty. Because of these transitions, our model can more quickly

switch its behavior after reversals and move toward a

steady state.

Note that our main claim about the usefulness of metaplastic-

ity is not contingent on exactly how transition probabilities

depend on the level of meta-states (e.g., power law in Equa-

tion 2 of STAR Methods). Instead, we propose that any flexible

RDMPmodel is suitable for adaptive learning if it exhibits a larger

effective learning rate for reward assignment on the better

than the one on the worse option at the steady state. Such a

model of metaplasticity can perform reasonably well without

being optimal, but more importantly, can capture the experi-

mental data.

Neural Correlates of Reward Uncertainty
So far we showed that our model can robustly perform the PRL

task while metaplastic synapses are adjusting to the uncertainty

and volatility in the environment and that the model captures
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Figure 7. Neural Correlates of Estimated Volatility in the RDMP Model

(A) Plotted is the average value of the difference in the changes in synaptic strengths in the RDMP model, for different environments.

(B) The time course of the difference in the change in synaptic strengths in the RDMPmodel (blue), and of estimated volatility from the hierarchical Bayesianmodel

(black) during three blocks of trials in the stable environment. For these simulations we used q1 = 0.2 and p1 = 0.6.

(C) The correlation coefficient between trial-by-trial estimate of ðDFB+ ðtÞ � DFB�ðtÞÞ and estimated volatility by the hierarchical Bayesian model over a wide range

of model’s parameters (the maximum transition probabilities), during ten environments with different levels of volatility (block length). The black curve indicates

parameter values for which the correlation is equal to 0.1.
important features of the experimental data better than all other

competing models. Given that a signal related to volatility esti-

mates in the hierarchical Bayesian model was identified in the

anterior cingulate cortex (ACC) (Behrens et al., 2007), we next

investigated whether there is any signal in our model that can

be used as a proxy for volatility estimated by the hierarchical

Bayesian model (since our model does not directly estimate

volatility). The presence of such signals would explain how neural

correlates of volatility could be detected even without any

Bayesian computations of volatility.

In the hierarchical Bayesian model, volatility ‘‘v’’ determines

the width of transition probability between two consecutive esti-

mates of reward probability (see STARMethods). Similarly, in our

model, abs(DFB+(t)) + abs(DFB-(t)) determines the scale of

changes between two consecutive estimates of reward proba-

bility. Because DFB-(t) is always negative, the above quantity

can be computed by ðDFB+ ðtÞ � DFB�ðtÞÞ. Indeed, we found

that the average value of the difference in synaptic strength

changes due to two possible reward assignments,

ðDFB+ � DFB�Þ, strongly depends on the uncertainty and vola-

tility in a given environment (Figure 7A). With a candidate signal

for the volatility in our model, we next asked whether this signal

might be correlated with volatility estimated by the hierarchical

Bayesian model.

We found that for certain model’s parameters, the time course

of ðDFB+ ðtÞ � DFB�ðtÞÞ closely resembled that of estimated vola-

tility from the hierarchical Bayesianmodel (Figure 7B). This differ-

ence can be estimated by the response of neurons that repre-

sent the latest change in the activity of value encoding neurons

between consecutive trials. We found a significant trial-by-trial

correlation between this approximation of ðDFB+ ðtÞ � DFB�ðtÞÞ
and estimated volatility over a wide range of model’s parame-

ters, and across many environments with different levels of un-

certainty and volatility (Figure 7C). As a comparison, we also

computed the correlation between estimated volatility and

change in the value function in the RL(2) model

ðDVB+ ðtÞ � DVB�ðtÞÞ. This correlation, however, was weak and

only observed for very limited values of RL(2)’s parameters
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(Figure S6). These results show that without computing volatility

explicitly, our model based on metaplasticity can generate a

signal that correlates with estimated volatility, and therefore,

might account for the signal observed in the ACC (Behrens

et al., 2007).

Our model predicts differential responses when reward is as-

signed to the better and worse options as it progresses into a

block of trials (compare DFB+ ðtÞ and DFB�ðtÞ in Figure 3). There-

fore, correlation between estimated volatility and changes in

synaptic strength might differ depending on whether the better

or worse option was rewarded. However, the trial-by-trial

approximation for changes in the synaptic strength based on

their latest value could result in a stronger correlation for trials

on which reward was assigned to the better option merely

because of the larger number of these trials. To avoid this

confound, we also computed the correlation between the

average time course of DFB+ ðtÞ (or DFB�ðtÞ) and estimated vola-

tility based on the hierarchical Bayesian model (Figure S7).

Indeed, we found a stronger correlation between these twomea-

sures for trials when reward was assigned to the better option.

Therefore, in addition to providing a mechanistic account of

the volatility signal observed in the ACC, our model also predicts

that this signal should depend on which option reward is as-

signed to. This prediction can be tested in future experiments.

DISCUSSION

Adjustment of Learning to Reward Uncertainty
Adaptive decision making relies on estimating the reward values

of objects or actions that have to be constantly updated, since

those values can unpredictably change over time in an uncertain

world (Bland and Schaefer, 2012; Courville et al., 2006; Mathys

et al., 2011; O’Reilly, 2013). There are two problems at the heart

of this estimation, depending on themodel used to tackle reward

under uncertainty. First, there is a tradeoff between having an

accurate estimate of reward values and being able to quickly

update those values due to changes in the environment (adapt-

ability-precision tradeoff). Second, estimating uncertainty is very



challenging without a proper model of the environment, but such

estimation is the foundation uponwhich alternativemodels of the

environment could be built (Bland and Schaefer, 2012; Courville

et al., 2006; O’Reilly, 2013).

Our model based on RDMP partially circumvents the first

problem by adjusting learning based on reward statistics, and

moreover, can generate a signal that can be used to build a

model of the environment. More specifically, the model in-

creases the effective learning rate on trials when reward is as-

signed to the better option and decreases the learning rate on tri-

als when reward is assigned to the worse option, as the model

experiences particular reward statistics. The difference between

these learning rates increases as volatility or uncertainty de-

creases. These adjustments allow better integration of signal

while ignoring noise and, thus, improve precision in detecting

the more rewarding option. The same mechanism, however,

causes the model to be initially slow in responding to real

changes in the environment. Nevertheless, after receiving a

few consecutive outcomes in the opposite direction of what

the model has previously learned about the environment, synap-

ses transition to more unstable meta-states allowing the model

to become adaptable again. Interestingly, our model can signif-

icantly predict choice behavior better than optimal models dur-

ing such sequences of trials.

A few studies have shown that the learning rates sharply in-

crease and then decay when a change point in reward statistics

occurs (Nassar et al., 2010; Diederen and Schultz, 2015). By ad-

justing to reward feedback, our model adopts two separate

learning rates for reward assignments on the better and worse

options. The learning rate increases over trials when the reward

outcome supports the currently better option, whereas it de-

creases when the outcome supports the currently worse option.

Although one of these changes is consistent with the results of

the aforementioned studies, there are critical differences be-

tween the tasks used in those and our studies. In those studies,

the subjects had to predict the value of a continuous variable and

were provided with the error in their prediction on every trial. This

task is very different from estimating reward probability based on

binary feedback without a possibility to detect abrupt changes in

the estimated quantity using a single reward outcome. Future

studies are required to test whether separate learning rates

also exists for estimation of continuous reward outcomes.

Neural Substrates of Adaptive Choice Under
Uncertainty
A previous study on the neural substrates of uncertainty has

shown that the BOLD signal in the ACC reflects volatility (unex-

pected uncertainty) and that variations in ACC signals are pre-

dictive of subject learning rates (Behrens et al., 2007). Here, we

show that changes in the activity of model neurons endowed

with RMDP can be used to estimate volatility. Interestingly, it

has been suggested that the ACC projections to the locus coeru-

leus (LC) enable target neurons to signal unexpected uncertainty

(Aston-Jones and Cohen, 2005), which is assumed to rely on the

norepinephrine (NE) system (Preuschoff et al., 2011; Yu and

Dayan, 2005). Therefore, our results show the feasibility of this

mechanism assuming the presence of metaplastic synapses in

the ACC, but more importantly, also suggest a plausible neural
substrate for generating the observed uncertainty signal in the

ACC. An analogous signal can be generated in our model simply

by adding the absolute changes in value estimates when reward

is assigned to the better option and when reward is assigned to

theworse option, without having an explicit model of the environ-

ment required for a Bayesian estimation of volatility. Further-

more, our model predicts a stronger correlate of estimated vola-

tility when reward is assigned to the better option.

A lesion study on the role of ACC in reward learning in dy-

namic environments has shown that ACC-lesioned animals

were unable to sustain a response that yielded reward and dis-

played a reduction in the time constant of reward integration

leading to impaired learning, especially when reward probabil-

ities were low (Kennerley et al., 2006; Rushworth and Behrens,

2008). Our results suggest that metaplasticity allows more

precise estimation of reward probability without a significant

loss in adaptability. If we consider the ACC as a nexus for

metaplasticity, we could assume that after losing a ‘‘meta-

plastic’’ evaluation system, ACC-lesioned monkeys would rely

more on ‘‘non-metaplastic’’ evaluation systems (e.g., in basal

ganglia), which are less capable of mitigating the adaptability-

precision tradeoff. To handle volatility in the environment,

the lesioned animals could increase their learning rates

resulting in more noise in their estimation of reward value

and, therefore, poorer performance in dynamic environments

(Rushworth and Behrens, 2008). This impairment in perfor-

mance would be more pronounced when the reward probability

is low, resulting in less frequent reward feedback, which is

consistent with the data (Kennerley et al., 2006). Therefore,

our model predicts that lack of a metaplastic evaluation system

(perhaps in ACC) should generally result in noisier behavior un-

der reward uncertainty.

Although reward signal utilized in our model is generally

believed to be transmitted by the neurotransmitter dopamine

(DA) (Schultz, 2002), others have suggested dedicated neuromo-

dulator systems for signaling different types of uncertainty (Bland

and Schaefer, 2012; Yu and Dayan, 2005). Nevertheless, several

pieces of evidence suggest that DA is a plausible neuromodu-

lator for guiding reward integration under uncertainty. First, DA

is the main neurotransmitter for signaling reward (Schultz,

2002), so any computations underlying reward uncertainty is

likely to rely on DA-dependent plasticity. Second, DA affects

neural processes at multiple timescales (Schultz, 2007). Interest-

ingly, a recent study using a PRL task found that the activity of

neurons in the ACC (which receives dopaminergic inputs) and

not in the lateral habenula (which inhibits midbrain DA neurons)

is strongly modulated by consecutive negative outcomes (Kawai

et al., 2015). Finally, there is indirect experimental evidence for

dopamine-dependent metaplasticity (Moussawi et al., 2009).

Altogether, these pieces of evidence and our results suggest

that computations underlying reward uncertainty could rely on

DA-dependent metaplasticity in the ACC, though other neuro-

modulator systems might be involved for improving these com-

putations further.

Relationship to Existing Models
Previous models for choice under reward uncertainty have pro-

posed roughly three different mechanisms for learning from
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reward feedback: (1) to determine the optimal learning rates

based on optimization or on the level of uncertainty in a given

environment (RL models) (Doya, 2002; Schweighofer and

Doya, 2003; Preuschoff and Bossaerts, 2007); (2) to identify

the correct model of the world, which includes the amount of un-

certainty to properly incorporate reward feedback (Bayesian

models) (Behrens et al., 2007; Courville et al., 2006; Daw et al.,

2005, 2006; Hampton et al., 2006; Payzan-LeNestour and Bos-

saerts, 2011; Yu and Dayan, 2005); and (3) to detect changes

in the environment to adapt learning accordingly (approximate

Bayesian models) (Gallistel et al., 2014; Jang et al., 2015; Mathys

et al., 2011; McGuire et al., 2014; Nassar et al., 2010, 2012;

Wilson et al., 2013, 2014).

Having the correct model of the environment, the Bayesian

models are able to outperform simple RL models, which have

only limited access to the state of the environment (Behrens

et al., 2007; Hampton et al., 2006; Jang et al., 2015; Payzan-

LeNestour and Bossaerts, 2011). Alternatively, one could assign

values to different states of the world and instead of re-learning

the value of each action, only estimates the state of the world,

which could greatly enhance behavioral adaptation (Wilson

et al., 2014). Nevertheless, when certain assumptions are

relaxed, the exact Bayesian inference becomes intractable and

it is unclear what approximations subjects should make to

perform the necessary computations (Courville et al., 2006, but

see Nassar et al., 2010, 2012, and Wilson et al., 2013). Interest-

ingly, most Bayesian models of choice under uncertainty as-

sume a hierarchical structure for uncertainty (e.g., expected

and unexpected uncertainty) on different timescales (Behrens

et al., 2007; Mathys et al., 2011; McGuire et al., 2014; Payzan-

LeNestour and Bossaerts, 2011; Wilson et al., 2013; Yu and

Dayan, 2005) or assume the correct structure of the task at

hand (Costa et al., 2015; Daw et al., 2002; Hampton et al.,

2006; Jang et al., 2015). It is, however, unclear how the brain

can separate different types of uncertainty or construct the

proper model of the environment. Indeed, in the absence of

any task instructions reflecting the structure of uncertainty,

experimental results do not support the use of the Bayesian

approach for dealing with uncertainty (Payzan-LeNestour and

Bossaerts, 2011).

In a recent work, Gallistel and colleagues showed that human

behavior during estimation of the probability of a binary

outcome, which unpredictably changes over time, cannot be ex-

plained by delta-rule models (Gallistel et al., 2014). They instead

suggested a new Bayesian model based on change-point esti-

mation and with evidence-triggered updating. In their model,

the estimate of reward probability is updated only if a change

is detected and, if so, a new estimate of reward probability can

be made depending on the location of the detected change.

Interestingly, a recent modeling study has shown that increased

responsiveness to change-points can be instantiated by pauses

in tonically active interneurons in the striatum enabling the mod-

ulation of learning rate by reward uncertainty (Franklin and Frank,

2015). Although we did not incorporate a change-detection

mechanism, such a mechanism would only improve the perfor-

mance of our model (Gallistel et al., 2001; McGuire et al.,

2014). Nevertheless, we suggest that via RDMP, reward statis-

tics itself can directly affect the level of plasticity and thus
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determine both learning and its adjustment according to reward

history and statistics.

A series of studies have provided approximations for full

Bayesian models of learning under uncertainty, and demon-

strated that these approximate models provide a better fit to

experimental data than full Bayesian models (Mathys et al.,

2011; Nassar et al., 2010, 2012; Wilson et al., 2013). Interest-

ingly, some of these models can be mapped onto learning

based on delta-rules and have a hierarchical structure where

updates in one level depends on estimate in another level (Ma-

thys et al., 2011; Wilson et al., 2013). Our model also has a hi-

erarchical structure, but the rate at which synapses transition

between a given set of meta-states is fixed and not controlled

by information in another level. Moreover, unlike the aforemen-

tioned approximate Bayesian models, learning in our model de-

pends on a binary reward signal and not on reward prediction

error. The multiple time constants for updates and hierarchical

structures in aforementioned models might rely on the

observed reservoir of reward memory time constants (Bernac-

chia et al., 2011) or could be a reflection of metaplasticity

proposed here, since metaplastic synapses contain different in-

ternal timescales.

Finally, a recent study claimed that metaplastic synapses are

limited in capturing abrupt changes in the environment and sug-

gested that a surprise detection system is necessary for adaptive

integration of reward feedback (Iigaya, 2016). Here, we show

that the metaplastic architecture utilized in that study is quite

inflexible, since it was originally designed for keeping memory

over long timescales (Fusi et al., 2005), leading to an incorrect

conclusion that metaplasticity cannot provide the needed solu-

tion. Although our model does not have a mechanism dedicated

for detecting abrupt changes in the environment and thus is sub-

optimal in shifting behavior after reversals, it captures subjects’

behavior better than competing optimal models during the

same exact shifts.

Computational Power of Metaplasticity
Although there is a large body of experimental evidence for

metaplasticity (Abraham, 2008), metaplasticity has been mainly

used to explain low-level phenomena such as changes in the

threshold for induction of plasticity due to prior synaptic activity

(Yger and Gilson, 2015). The contribution of metaplasticity to

behavior is mostly unknown and our study is the first to provide

direct behavioral evidence for it. Generally speaking, any model

that exhibits synaptic changes without changes in synaptic effi-

cacy can capture a form of metaplasticity (Fusi et al., 2005). Our

model incorporates modifications to dopamine-dependent Heb-

bian learning rules (Reynolds and Wickens, 2002; Soltani and

Wang, 2006) that depend on activity in the preceding trials,

and thus extend the experimentally observed effects of meta-

plasticity to the realm of reward-dependent learning for which

there is some indirect experimental evidence (Moussawi et al.,

2009). Our goal herewas to show that, in principle, metaplasticity

could provide a plausible solution to an important problem in

value-based learning. The novelty of our proposal is that it pro-

vides a plausible and robust low-level (i.e., synaptic level) mech-

anism for a seemingly high-level cognitive function, entirely

based on metaplasticity.



Metaplastic synapses are strong computational tools because

of the many possible transitions they contain, many of which do

not change synaptic efficacy, making meta-states similar to

hidden layers in Markov chains (Rabiner, 1989). The space of

possible metaplastic models is immense and our exploration of

metaplastic models suitable for learning in dynamic environ-

ments has revealed an important component of these models:

the ability to destabilize weak (strong) synapses while stabilizing

strong (weak) synapses on potentiation (depression) events.

Although our proposed metaplasticity architecture still needs

to be tested in future experiments, this architecture allowsmeta-

plastic models to be adaptable without significantly increasing

noise, and thus mitigating the adaptability-precision tradeoff.

Together, our work highlights the overlooked power of meta-

plastic synaptic mechanisms for solving complex cognitive

problems (Mongillo et al., 2008).
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MATLAB MathWorks https://www.mathworks.com/products/

matlab.html
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to andwill be fulfilled by the LeadContact, Dr. Alireza

Soltani (soltani@dartmouth.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Two male rhesus monkeys (age 5.8 and 5.1 years) were used. One monkey had been previously trained on a manual joystick task

before this experiment and the other monkey had not been used for any prior experiments. Eye movements were monitored using

an infrared eye tracker (ET49, Thomas Recording, Germany). All experimental procedures were approved by the Institutional Animal

Care and Use Committee (IACUC) at Yale University. More details have been reported previously (Donahue and Lee, 2015).

METHOD DETAILS

Behavioral task
The animals were trained on a modified probabilistic reversal learning (PRL) task. In this task, two color targets (red and green) ap-

peared on the screen after the animals fixated on a white square (c.f. Figure 1A in Donahue and Lee, 2015). After a 500-ms interval, a

set of yellow tokenswas presented around each target, indicating themagnitude of potential reward on a given target. Importantly, on

each trial, one of the target colors was associated with a high reward probability (80%), and the other was associated with a low

reward probability (20%). These reward probabilities were fixed within a block of trials and alternated across blocks of 20 or 80 trials

(L = 20, or 80) so that the animals had to learn them through experience. The central fixation cue was extinguished following a random

interval (ranging from 500ms to 1200ms) after which the animals were free to shift their gaze toward one of the two color targets. The

animals received visual feedback after fixating the chosen target for 500 ms. A red or green ring around the chosen target indicated

that the animals would be rewarded (after another 500 ms), while a gray or blue ring indicated that they were not to be rewarded. On

trials where the animals were rewarded, they received the amount of apple juice associated with the chosen target. Each token cor-

responded to one drop of juice (0.1 mL). The rewardmagnitudes associated with each target color were drawn from the following ten

possible pairs: {1,1}, {1,2}, {1,4}, {1,8}, {2,1}, {2,4}, {4,1}, {4,2}, {4,4}, {8,1}. Each magnitude pair was counter-balanced across target

locations so that reward magnitude did not provide any information about the location of reward. We did not find any systematic dif-

ferences in either animal’s behavior and therefore, we combined the data from both monkeys in the analyses (a total of 118 sessions

and 66,148 trials). More details about the task and behaviors of the animals have been reported previously (Donahue and Lee, 2015).

Computational model
Weconstructed amodel to simulate the choice behavior during a PRL task or itsmodified version (see above). In the regular PRL task,

the subject selects between two alternative options (e.g., red and green targets) that deliver reward probabilistically (Figure 1A). The

probability of reward on the green and red options, pR(g) and pR(r), are complementary, but these probabilities switch (i.e., reverse)

after a certain number of trials referred to as block length, L. We refer to the option with a larger and smaller reward probability on a

given block as the better and worse option, respectively. The model consists of the value-encoding and decision-making circuit. The

value-encoding circuit contains two pools of value-encoding neurons representing the reward value of the two options. These neu-

rons receive their inputs through a set of metaplastic synapses that estimate the probability of reward from the two options via a

reward-dependent learning rule based on metaplasticity (see Learning rule). The decision-making circuit uses the output of value-

encoding neurons in order to make a decision on each trial.

We assumed that metaplastic synapses have multiple meta-states associated with each of the two levels of synaptic efficacy:

weak and strong (Figure 2A). Although for simplicity we assumed binary values for synaptic efficacy, our results also hold for the
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case where there are multiple levels of efficacies. Depending on model’s choice and reward outcome on each trial, metaplastic syn-

apses could transition between meta-states with similar or different synaptic efficacy (see Learning rule). This property allows us to

simulate metaplasticity, or changes in the synaptic state that influence future synaptic changes without any observable change in the

efficacy of synaptic transmission (Abraham and Bear, 1996).

The output of value-encoding neurons associated with a given option reflects the overall synaptic efficacy of metaplastic synapses

onto those neurons.We quantified the fractions of synapses in a given pool (e.g., associated with the green target) that are in different

weak and strong meta-states as fgi-(t) and fgi+(t), respectively (g represents green, i represents the meta-state level, and t represents

the trial number). Because there are two levels of synaptic efficacy, the overall synaptic efficacy for each set of metaplastic synapses

can be quantified as the overall fraction of synapses in strong meta-states. This fraction, which we refer to as the ‘synaptic strength’,

is equal to the sum of the fraction of synapses in each set that are in any strong meta-states, Fg+ ðtÞ=
Pm

i =1fgi + ðtÞ and

Fr + ðtÞ=
Pm

i =1fri + ðtÞ, where m is the number of meta-states (weak or strong).

As we have shown before, the decision on every trial only depends on the overall difference in the output of the two value-encoding

pools (Soltani andWang, 2006, 2010; Soltani et al., 2006). This difference is proportional to the difference in the synaptic strengths of

the two pools. Therefore, the decision on each trial is determined stochastically with a probability:

PgðtÞ= 1

1+ exp

�
�
�
Fg+ ðtÞ � Fr + ðtÞ

�
s

� (Eq. 1)

where Pg(t) is the probability of choosing the green target on trial t, and s determines the stochasticity in choice. We set s equal to

0.1 which resulted in variability in decision making comparable to the level observed experimentally (Donahue and Lee, 2015).

Learning rule
We assumed that the transition probability between different meta-states becomes smaller for more stable (or ‘deeper’) meta-states

in an exponential fashion. We adopted this specific formulation of RDMP for simplicity to be able to explore its behavior over a range

of parameters. However, we note that this model provides one of many of possible solutions for performing learning under reward

uncertainty successfully. In this formulation, the transition probabilities associated with each meta-state is determined by a power

law equation:

q+
i =q+

1

ððm�2Þ3 i + 1Þ=m�1; q�
i =q�

1

ððm�2Þ3 i + 1Þ=m�1 for 2%i%m

p+
i =

�
p+
1

�i
; p�

i =
�
p�
1

�i
for 2%i<m (Eq. 2)

where m is the number of meta-states, q+
1 is the probability for transitions between the most unstable weak to the most unstable

strongmeta-state, q+
i (for i > 1) is the probability for the transitions fromweakmeta-state (i+1) to themost unstable strongmeta-state

(S1), and p+
i is the probability for the transitions between the weak meta-states (i+1) and i, and between strong meta-states i and

(i+1) (Figure 2A). Similarly, q�
1 is the probability for transitions between the most unstable strong to the most unstable weak meta-

state, q�
i (for i > 1) is the probability for the transitions from strong meta-state (i+1) to the most unstable weak meta-state (W1),

and p�
i is the probability for the transitions between the strong meta-states (i+1) and i, and between weak meta-states i and (i+1).

For simplicity, here we assumed equal transition probabilities for potentiation and depression events: q+
1 =q�

1 = q1 and p+
1 =p�

1 =

p1, where q1 and p1 are the transition probability from and to the most unstable meta-states. Unless otherwise mentioned, the model

simulations were done using q1 = 0.4 and p1 = 0.3 with four levels of meta-states (m = 4). Note that p1 = 0 corresponds to a model

without upward or downward transitions between meta-states and is equivalent to the RL(1) model with the learning rate equal to

q1 (i.e., a model without metaplasticity). Moreover, in our formulation, m = 2 model is also equivalent to the RL(1) model since

q2 = q1 form = 2. We assumed a large number of metaplastic synapses for each set of neurons representing or estimating the reward

probability and thus, used a mean-field approach to simulate the change in synaptic efficacy for sets of synapses associated with

alternative options (e.g., red and green targets).

The changes in the synaptic states on each trial depend on themodel’s choice and reward outcome. However, because during the

PRL task the reward is assigned to one of the two options, the location of reward can be inferred on each trial and used to learn.

Therefore, here we have assumed that the reward assignment on each trial can determine the direction of change in the synaptic

efficacy and learning. More specifically, if reward is assigned to the green target on a given trial (independently of what is selected),

synapses associated with the green target are potentiated whereas synapses associated with the red target are depressed. Similarly,

if reward is assigned to the red target on a given trial (independently of what is selected), synapses associated with the red target are

potentiated whereas synapses associated with the green target are depressed. This ‘coupled’ learning rule leads to the two sets of

complementary synaptic strengths ðFg+ ðtÞ= 1� Fr + ðtÞÞ.
On potentiation events, synapses occupying weak meta-states stochastically (i.e., with certain probabilities) transition to less sta-

ble weak meta-states while synapses occupying strong meta-states stochastically transition to more stable strong meta-states

(golden arrows in Figure 2A). Moreover, synaptic efficacy could increase by synapses occupying weak meta-states making transi-

tions to the most unstable strong meta-state (S1). Therefore, on trials when the set of synapses associated with the green target is
e2 Neuron 94, 401–414.e1–e6, April 19, 2017



potentiated, the fractions of synapses in different meta-states are updated as the following (index g (r) in fgi (fri) is dropped for better

readability):

f1+/f1+ +
Xm

j = 1
qj fj� � p1 f1+ (Eq. 3)

f1�/f1� � q1f1� +p1 f2�

fi +/fi + +pi�1fði�1Þ+ � pi fi + ; for 1< i <m

fi�/fi� � qifi� � pi�1fi� +pi fði + 1Þ�; for 1< i <m

fm+/fm+ +pm�1fðm�1Þ+

fm�/fm� � qmfm� � pm�1fm�

Importantly, because of the stochastic nature of synaptic transitions, potentiation events may not change synaptic efficacy of

some synapses.

On depression events, similar transitions happen but in the opposite direction causing weak (respectively, strong) synapses to

become more (respectively, less) stable and making strong meta-states transition to the most unstable weak meta-state (W1) and

therefore, reducing synaptic efficacy (cyan arrows in Figure 2A). Therefore, on trials when this set of synapses is depressed, these

fractions are updated as the following:

f1�/f1� +
Xm

j =1
qj fj + � p1 f1� (Eq. 4)

f1+/f1+ � q1f1+ +p1 f2+

fi�/fi� +pi�1fði�1Þ� � pi fi�; for 1< i <m

fi +/fi + � qifi + � pi�1fi + +pi fði + 1Þ+ ; for 1< i <m

fm�/fm� +pm�1fðm�1Þ�

fm+/fm+ � qmfm+ � pm�1fm+

Note that if both q1 and p1 are large, the Equations 2-4 may result in negative values for the fraction of synapses in certain meta-

states. Therefore, we limited model’s parameters to avoid such implausible transitions (white regions in Figures 6D–6F and 7C, and

Figure S7).

Based on Equations 3-4, changes in the synaptic strength for synapses associated with the better option when reward was as-

signed to that option (DFB+(t)) or the alternative option (DFB-(t)) are equal to:

DFB+ ðtÞ=
Xm

j = 1
qj fBj�ðtÞ (Eq. 5)

DFB�ðtÞ= �
Xm
j = 1

qj fBj + ðtÞ

where fBj+and fBj- are the fraction of synapses associatedwith the better optionwhich are in the strong andweakmeta-state j, respec-

tively. Because of the coupled nature of the learning rule, changes in the synaptic strength for synapses associated with the worse

option, DFW+ and DFW-, are the mirror image of those for the better option; DFW+ = -DFB- and DFW- = -DFB+. Finally, we defined the

model’s overall response to both types of reward feedback as the overall change in the synaptic strength for synapses associated

with the better option as the weighted average of DFB+ and DFB-:

DFðtÞ=pRðBÞ DFB+ ðtÞ+pRðWÞDFB�ðtÞ (Eq. 6)

where pR(B) and pR(W) are the probability of reward on the better and worse options in a given block, respectively.

Model simulations
To test the adjustments of our model to reward statistics in the environment, we simulated behavior in ten different environments

requiring very different learning rates based on a simple reinforcement learning model (see Alternative models). The environment

1 to 10 (Figure 1C) are defined with the following parameters: pR(B)/pR(W) = [0.6/0.4, 0.62/0.38, 0.65/0.35,0.67/0.33, 0.69/0.31,

0.71/0.29, 0.73/0.27, 0.76/0.24, 0.78/0.28, 0.8/0.2] and L = 200, 180, 160, 140, 120, 100, 80, 60, 40, and 20, where pR(B) and
Neuron 94, 401–414.e1–e6, April 19, 2017 e3



pR(W) are the probability of reward on the better and worse options, respectively, and L is the block length. To further test robustness

of metaplasticity, we also measured the performance in a ‘universe’ where the level of uncertainty changes more gradually across

blocks. More specifically, the reward probability on the better option (i.e., the option with a higher reward probability) could change

between 0.6 and 0.8 with a step size of 0.05 (the probability for the worse option was equal to 1 minus this number) while the block

length could vary between 20, 50, 100, and 200 trials. A universe contains environments defined by all possible combinations of

above probabilities and block lengths (each environment lasted for 2000 trials before changing to another environment). All other

models were tested on a similar variable environment, and the results are based on average from ten randomly generated universes.

For simulations presented in Figure 7C and Figures S6B and S7, we used a set of ten environments with reward probability equal to

0.8/0.2 and block length L = 20, 40, 60, 80, 100, 120, 140, 160, 180, 200.

Computation of the effective learning rates
In our model, learning is determined by reward history and therefore, changes over time. In order to capture the change in learning

over time, we computed the ‘effective’ learning rates when reward was assigned to the better or worse option on a given block of

trials. More specifically, the effective learning rate when reward was assigned to the better option on trial t after a reversal, KB+(t),

was defined as the overall increase in the efficacy of metaplastic synapses associated with that option divided by the total fraction

of those synapses in weak meta-states (using Equation 5),

KB+ ðtÞ=
�Xm

j = 1
qj fBj�ðtÞ

�.�Xm

j = 1
fBj�ðtÞ

�
=DFB+ ðtÞ

.�Xm

j = 1
fBj�ðtÞ

�
(Eq. 7a)

Similarly, the effective learning rate when reward was assigned to the worse option, KB-(t), was defined as the overall decrease in

the efficacy of respective metaplastic synapses divided by the total fraction of those synapses in strong meta-states,

KB�ðtÞ=
�Xm

j = 1
qj fBj + ðtÞ

�.�Xm

j = 1
fBj + ðtÞ

�
=�DFB�ðtÞ

.�Xm

j =1
fBj + ðtÞ

�
(Eq. 7b)

We refer to these ratios as the ‘‘effective’’ learning rates since they are analogous to the learning rates in a corresponding RLmodel

at a given point in a block.

Note that the effective learning rates for synapses associated with the worse option were the mirror image of those for the better

option. This is due to the coupled learning rule adopted for the PRL task, where reward is assigned to one of the two options, entailing

that the two sets of synapses associated with the two options are updated in the opposite direction of each other on every trial. Re-

laxing the coupled learning rule results in two separate sets of learning rates for the two options, a possibility not considered further in

the present study.

We also computed the effective learning rate on rewarded and unrewarded trials, Krew(t) and Kunr(t), by simply averaging the effec-

tive learning rates based on choice and outcome on a given trial:

KrewðtÞ=PBðtÞ3pRðBÞ3KB+ ðtÞ+ ð1� PBðtÞÞ3pRðWÞ3KB�ðtÞ (Eq. 8)

KunrðtÞ=PBðtÞ3pRðWÞ3KB�ðtÞ+ ð1� PBðtÞÞ3pRðBÞ3KB+ ðtÞ
where PB(t) is the probability of choosing the better option on trial t after a reversal, and pR(B) and pR(W) are the probability of reward

on the better and worse options in a given block, respectively.

Alternative models
The model referred as RL(1) is a simple RL model based on the reward prediction error (RPE) and has two parameters: a single

learning rate ðaÞ, and a temperature that determines the amount of stochasticity in decision-making process. In this model, the

two options (red and green targets) are assigned with value functions Vg and Vr and the choice is determined based on the logistic

function of the difference between these two values:

PgðtÞ= 1

1+ exp
�� �

VgðtÞ � VrðtÞ
��

s
� (Eq. 9)

where s determines the amount of stochasticity in choice. After every trial, the value functions are updated based on the reward

assignment (assuming a ‘coupled’ learning rule):

Vgðt + 1Þ=VgðtÞ+a
�
rðtÞ � VgðtÞ

�
; rðtÞ= 1ð0Þ for reward assigned to green ðredÞ
VrðtÞ= 1­VgðtÞ (Eq. 10)
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Themodel referred as RL(2) is a simple RL model based on the RPE and two separate learning rates for rewarded and unrewarded

trials (arew and aunr ) instead of one as in RL(1). Therefore, the value functions are updated as:

Vgðt + 1Þ=VgðtÞ+arew

�
1� VgðtÞ

�
; reward assigned to green and green selected
Vgðt + 1Þ=VgðtÞ+aunr

�
1� VgðtÞ

�
; reward assigned to green but red selected
Vgðt + 1Þ=VgðtÞ � arewVgðtÞ; reward assigned to red and red selected
Vgðt + 1Þ=VgðtÞ � aunrVgðtÞ; reward assigned to red but green selected (Eq. 11)

The decision rule was similar to RL(1). Unless otherwisementioned, we used arew = 0.4, aunr = 0.2, and s = 0.1 for all RL(1) and RL(2)

simulations.

The hierarchical Bayesian model is similar to the model presented in Behrens et al. (Behrens et al., 2007). Briefly, this model as-

sumes a three-layer hierarchical structure for changes in reward probability over time. At the lowest level, the parameter r(t) estimates

the rate of reward on a specific option. The magnitude of the trial-by-trial change in the reward rate is controlled with a parameter

called volatility (v). More specifically, the exponential of v effectively determines the scale of possible updates by setting the width

of the transition probability distribution between and r(t) and r(t+1). Finally, the change in volatility is governed or tuned by a parameter

k (the second-order volatility, for more details see Behrens et al., (2007)).

Finally, the change-detection Bayesianmodel is amodification of themodel by Jang et al. (Jang et al., 2015) tomake it a generative

model which can detect changes in reward schedule and choose the better optionwith a fixed probability. The original model is a post

hoc model that tries to predict the subject’s choice reversal by estimating the posterior probability that reversals occurred on each

trial (Costa et al., 2015). To do so, it assumes that subjects choose the most rewarding option with a certain probability and reverse

their choice behavior when odds of occurring a reversal reach a certain threshold. Moreover, the model assumes that subjects up-

date prior about the location of the reversal over time. Wemade a fewmodifications to enable this post hocmodel to generate choice

sequences and measure its performance during the PRL task (Figure 6A). More specifically, we assumed that to estimate the prob-

ability that a reversal had occurred on a given trial, the model has access only to reward feedback from the previous trials, and that

there is only one reversal across two blocks of trials as in the original model (Costa et al., 2015). Moreover, to obtain the maximum

performance for this model, we used a 2D grid search of initial values of prior and the update coefficients of animal’s belief about

reversal occurrence for each environment (see Jang et al., 2015 for more details).

QUANTIFICATION AND STATISTICAL ANALYSIS

Fitting of experimental data and data analysis
Based on previous results (Donahue and Lee, 2015), we only consideredmodels in which reward probability andmagnitude are com-

bined additively, and reward probability values are updated for both targets on every trial (coupled learning). More specifically, the

estimated probability of choosing the green target, Pg(t), was fit according the following equation:

logit PgðtÞ= b0 + bstayDpc + bp

�
pgðtÞ � prðtÞ

�
+ bm

�
mgðtÞ �mrðtÞ

�
(Eq. 12)

where b0 measures an overall bias toward the green or red target, bstay captures the tendency to repeat the previous choice (Dpc = 1,

0 if the previous choice was green or red, respectively), bp and bm are the regression coefficients for reward probability and magni-

tude, pg(t) is the estimated probability based on a given model for the green target (equal to Fg+(t) and Vg(t) in the RDMP and

RL models, respectively), andmg(t) is the magnitude of the possible reward on the green target. Similarly, pr(t) andmr(t) are the esti-

mated probability and the magnitude of the possible reward on the red target, respectively.

We used eight different models to estimate reward probability on each trial in order to fit the experimental data. We utilized the

standard maximum likelihood estimation method by minimizing the negative log likelihood to obtain the best fitting parameters for

each model. These eight models include: two Bayesian models with different mechanisms for solving the PRL task (hierarchical

and change-detection Bayesian); two types of RL models, RL(1) and RL(2), with constant or time-dependent learning rates; the

RDMP model with three meta-states; and a simplified version of the RDMP model (see below). To directly estimate the transition

probabilities in the RDMP model, we used the architecture presented in Figure 2A with three meta-states (m = 3) but allowed any

values for these transitions with the constraint that they should be smaller for deeper meta-states.

To assess the goodness-of-fit (negative log likelihood) for each model, we employed 5-fold cross-validation where we fit the data

using 80% of randomly selected sessions from a given environment (95 sessions, about 52000 trials) and used the best fitting pa-

rameters to predict choice on the remaining 20% of the sessions (23 sessions, about 13000 trials). We repeated this procedure

110 times (i.e., bootstrapped) to obtain a stable average value for the log likelihood for each model. Crucially, the large amount of
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behavioral data allowed us to accurately test different models. To compare the results of fits using different models, we only used the

test trials. Additionally, to capture the time course of learning rates over time in the sRDMP, RL(1) and RL(2) models (Figures 5A and

5D and Figure S4), we also fit experimental data from each session separately using the maximum likelihood estimation method.

To test the prediction of the RDMPmodel (time-dependent, choice-specific learning rates) independently of its specific implemen-

tation, we used a simplified version of this model referred to as the ‘simplified’ RDMP (sRDMP). Moreover, using the sRDMP model

also allowed us to circumvent degeneracy in the solution (i.e., lack of unique solution) for the RDMPmodel because each value of the

synaptic strength could potentially correspond to many different distributions of synapses in different weak and strong meta-states.

Compatibility of fits based on RDMP and sRDMP illustrates that the sRDMPmodel can be used to detect the contributions of RDMP

to behavior. In the sRDMP model, we assumed separate time-dependent learning rates for trials when reward was assigned to the

better and worse options. Considering the overall behavior of the effective learning rates over time (Figure 3A) we also assumed the

learning rate on trials when the reward was assigned to the better or worse option can exponentially increase or decrease over time

after a reversal based on following equation:

aðtÞ=ass � ðass � a0Þ3 expð�t=tÞ (Eq. 13)

where a0 and ass are the initial and steady-state learning rates, t is the time constant of the decay, and t is the number of trials after a

reversal. According to Equation 13, the learning rates could increase or decrease over time, or stay constant. We used a similar

approach for fitting data using the RL(1) and RL(2) models with time-dependent learning rates.

To compare the prediction of the models for choice on congruent and incongruent trials (Figure 4B), we computed the average

negative log likelihood (–LL) per trial for each sequence. More specifically, for congruent trials, the average –LL was computed for

the last trial in all reward sequences 011, 0111, etc., where 1 and 0 denote reward assignment on the better and worse options,

respectively. For incongruent trials, the average –LL was computed for the last trial in all sequences 010, 0110, etc.
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